首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are two 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) in rat liver, one in mitochondria (type I enzyme), and another in peroxisomes (type II enzyme). In a series of the studies on the properties and the physiological roles of fatty acid oxidation systems in both organelles, the two enzymes were purified and compared for their properties. The final preparations obtained were judged to be homogeneous based on the results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and sedimentation velocity analysis. Type I enzyme was composed of two identical subunits of molecular weight of 32,000, whereas type II enzyme was a monomeric enzyme having a molecular weight of 70,000–77,000. These subunit structures were confirmed by the results of fluorescence studies. Both enzymes were different in amino acid compositions, especially in the contents of tryptophan and half-cystine. Antibodies against them formed single precipitin lines for the corresponding enzymes, but not for the others when subjected to an Ouchterlony double-diffusion test. The Km values of type II enzyme for various substrates were lower than those of type I enzyme except those for acetoacetyl-CoA. As for 3-hydroxyacyl-CoA substrates, both enzymes had lower Km's for longer-chain substrates. The V for the substrates of C4C10 were similar for each enzyme, though the value of type II enzyme for C10 substrate was rather lower. The results of fluorescence studies suggested that their dissociation constants for NADH were lower and those for NAD+ were higher at lower pH. Both enzymes were specific to l-form of 3-hydroxyacyl-CoA substrate. The optimal pH of the forward reaction of type I and type II enzymes was 9.6 and 9.8, and of the reverse reaction, 4.5 and 6.2, respectively. From these results they were concluded to be completely different enzymes.  相似文献   

2.
Folate-binding protein(s) from chronic myelogenous leukemia cells have been purified using acid dialysis, ammonium sulfate fractionation and affinity chromatography. The purified preparation which migrates as a single band on disc electrophoresis could be separated by DEAE agarose chromatography into two folate-binding proteins (binders I and II) which bind molar equivalents of folic acid. One binder (I) eluted from DEAE at 1 mM sodium phosphate, pH 6.0, and the other (II) at 100 mM sodium phosphate, pH 7.4. Analysis of the purified mixture, which contained more than 90% binder II, by sedimentation equilibrium centrifugation indicated a homogeneous protein with a calculated molecular weight of 44000. Antiserum raised against the purified mixture gave a single precipitin line by immunodiffusion against a preparation of partially purified cell lysate.Hydrolysis of the more acidic binder (II) with neuraminidase converted it to a weakly acidic protein similar to binder I suggesting that these binders are glycoproteins which differ in sialic acid content. With isoelectric focusing, the binding of folic acid would be demonstrated at pH 6.7, 7.3, 7.8 and 8.2 for binder I, and at pH 5.1, 5.8 and 6.5 for binder II. Binders I and II had equally high affinity for folic acid and dihydroflate, lower affinity of N5-methyl-tetrahydrofolate, and no apparent affinity for N5-formytetrahydrofolate or methotrexate.  相似文献   

3.
Anodic polyacrylamide gel electrophoresis of extracts of cultures of tobacco tissue Nicotiana tabacum W-38 revealed the presence of two 6-phosphogluconate dehydrogenases (6PGD). The slow and the fast anodic migrating zones were designated I and II, respectively. After purification, enzymes from both zones exhibited no major differences in their affinity towards 6-phosphogluconate (6PG) or NADP+, and were found to have approximately the same pH optima and MWs (69 000–72 000). The coumarins scopoletin and esculetin showed some inhibitory effect on each isozyme at 0.4 mM. Below 0.3 mM, however, esculetin stimulated the activity of zone I when lower amounts of 6PG (S0.25) were used. The glucosylated compounds, scopolin and esculin, were much more inhibitory towards the 6PGDs than their respective aglycones. Ferulic, p-coumaric and caffeic acids seemed to have an inhibitory effect dependent on 6PG concentration. A larger inhibition was observed in each case at the lower 6PG levels used. Zone I activity appeared to be inhibited to a greater degree than zone II activity by 0.4 mM p-coumaric acid with low 6PG. Of the phenolic compounds tested, chlorogenic acid was most effective, completely inhibiting the enzyme activity at 0.4 mM. Of the non-phenolic compounds investigated, glucose 1,6-diphosphate inhibited both isoenzymes of 6PGD at lower 6PG concentrations. On the other hand, 2,3-diphosphoglycerate activated both isoenzymes up to 200% of their original activity.  相似文献   

4.
Wilson CM 《Plant physiology》1968,43(9):1339-1346
Three enzymes with ribonuclease activity, one of which also had deoxyribonuclease activity, have been isolated and partially purified from corn seeds and seedlings. The purification of Ribonuclease I from mature seed was previously reported. This enzyme has a pH optimum near 5.0, is loosely adsorbed to carboxymethyl-cellulose, and has a molecular weight of 23,000, determined by gel filtration.

Ribonuclease II was isolated from the microsomes of corn roots, and was partially purified by gel filtration. It has a pH optimum plateau from 5.4 to 7.0, and molecular weight of 17,000.

Nuclease I hydrolyzes both RNA and DNA. It was isolated from the large particles of a corn root homogenate and was partially purified on a carboxymethyl-cellulose column. It has a pH optimum at 6.2 and a molecular weight of 31,000.

The relative activities of the 3 enzymes for deoxyribonuclease and at pH 5 and pH 6.2 for ribonuclease may be used to characterize them during purification operations. Assays on homogenates of corn roots, and especially of the root tips, suggested that a fourth enzyme, which possesses deoxyribonuclease activity, is also present.

  相似文献   

5.
A gastricsinogen-like acid proteinase precursor has been purified by DEAE-cellulose, DEAE-Sephadex A-50, poly-l-lysine-Sepharose 4B, and N-acetyl-l-phenylalanyl-l-tyrosine-Sepharose 4B affinity chromatography from human prostates. The active enzyme hydrolyzes acid-denatured hemoglobin at pH 1.0 and 3.0, while two other active fractions only showed the pH 3.0 activity and resembled cathepsin D (EC 3.4.23.5). The pH optimum, milk-clotting activity, specificity toward synthetic substrates, inhibition by pepstatin, and molecular weight strongly suggest that the prostatic-derived enzyme is identical to seminal fluid and to gastric juice gastricsin.  相似文献   

6.
A complex of proteases was fractionated into three enzymes by chromatography of a crude enzyme preparation obtained from culture fluid of the fungus Mucor renninus on biospecific polystyrene adsorbent. Electrophoretically homogeneous proteases I-III were obtained by subsequent rechromatography on biospecific adsorbent and gel filtration on Sephadex G-75. Optimal proteolytic activities occurred at pH 4.25; 3.5 and 2.5 for enzymes I, II and III, respectively. Milk-clotting activity was exhibited only by protease II. All three proteases hydrolysed haemoglobin, Na caseinate and bovine serum albumin. Enzyme I hydrolysed Na caseinate the most effectively, while haemoglobin was the most effective substrate for proteases II and III. Trypsinogen was activated only by protease I. All three enzymes have a molecular weight ~35 000 as determined by gel chromatography on Sephadex G-75 column and by sodium dodecylsulphate disc electrophoresis. Isoelectric points, pH-stability range, amino acid composition, carbohydrate content were determined for each enzyme and the influence of metal ions (Ca2+, Mg2+, Cu2+, Co2+) on proteolytic activities of these enzymes studied.  相似文献   

7.
This paper describes the purification and properties of an enzyme present in Artemia larvae which hydrolyzes aminoacyl-tRNA by splitting the ester bond between the amino acid and the tRNA chain. The hydrolase has a molecular weight of 55 000 as estimated by gel filtration in Sephadex G-150, is maximally active in the presence of a divalent cation (Mg2+, Mn2+) and has a pH maximum at around neutrality. The enzyme has a wide substrate specificity, hydrolyzing with practically the same efficiency aminoacyl-tRNAs with the amino group free or substituted. This property distinguishes this enzyme from the widely distributed peptidyl-tRNA hydrolase and other more specific aminoacyl-tRNA hydrolases. The expression of the hydrolase during Artemia larval development is blocked by inhibitors of protein synthesis.  相似文献   

8.
Possible roles of trans3-hexadecenoic acid containing phosphatidylglycerol (PG) in the organisation of photosynthetic complexes were studied using two mutants of Chlamydomonas reinhardtii, mf1 and mf2, that totally lack this lipid and in which the level of the others remaining PG was consequently reduced to about 30% of the wild-type. Both the mutants have lost the capacity to stabilise the light-harvesting chlorophyll a/b–protein complex LHC II in a trimeric state and display an increased instability of the PS I light-harvesting-core complex after detergent mediated solubilisation. In this paper, we show that a very reduced growth rate of the mutant cells largely reduces the extent of these defects, allowing a significant formation of trimeric LHC II and a stabilisation of the PS I complex, in the absence of synthesis of trans3-hexadecenoic acid or of increased level of PG. These results seem to be at variance with the generally accepted role of trans3-hexadecenoic fatty acid (16:1(3t)) in the formation of the PS II light-harvesting antenna. On the other hand, they appear to be consistent with the observation that trimeric LHC II can be formed in the presence of 16:1(3t)-lacking PG in a mutant of Arabidopsis thaliana and in chloroplasts from cotyledons of some Orchideae. We conclude that 16:1(3t)-PG is indeed required for the stabilisation of the trimeric LHC II and of the PS I complex under conditions of high biosynthesis rate, and that it is not essential when these components of the photosynthetic membrane are synthesised at low rates.  相似文献   

9.
In vitro synthesis and processing of tomato fruit polygalacturonase   总被引:10,自引:5,他引:5       下载免费PDF全文
The in vitro processing of tomato fruit polygalacturonase (PG) (poly[1,4-α-d-galacturonide]glucanohydrolase, EC 3.2.1.15) was studied. Complete chemical deglycosylation of a mixture of mature, purified PG 2A and PG 2B isozymes (45 and 46 kilodaltons; respectively) with trifluoromethane sulfonic acid yielded a single polypeptide of 42 kilodaltons. Similarly, N-terminal amino acid sequencing of the PG 2A/2B isozyme mixture yielded a single 21 amino acid N-terminal sequence, suggesting that the two isozymes result from differential post-translational processing of a single polypeptide. Translation of PG mRNA in vitro results in the synthesis of a single polypeptide with an apparent molecular weight of 54 kilodaltons. Nucleotide sequence analysis of a full-length PG cDNA clone indicates that the large size difference between the PG in vitro translation product and the mature isozymes is due to the presence of a 71 amino acid (8.2 kilodaltons) domain at the N-terminus of in vitro translated PG, consisting of a hydrophobic signal sequence followed by a highly charged prosequence. To determine the precise cleavage site of the signal sequence, PG mRNA was translated in vitro in the presence of canine pancreas microsomal membranes. This resulted in the production of two glycosylated PG processing intermediates with apparent molecular weights of 58 and 61 kilodaltons. The PG processing intermediates were shown to be sequestered within the lumen of the microsomal membranes by protease protection and centrifugational analysis. Deglycosylation of the PG processing intermediates with endoglycosidase H yielded a single polypeptide with an apparent molecular weight of 54 kilodaltons. The production of two distinct, glycosylated processing intermediates from the single in vitro translated PG polypeptide suggests a mechanism by which the differential glycosylation observed for the mature PG 2A and PG 2B isozymes may occur. Edman degradation of 3H-labeled 58 and 61 kilodalton PG processing intermediates indicates that the site of signal sequence cleavage is after amino acid 24 (serine). These results suggest that the proteolytic processing of PG occurs in at least two steps, the first being the co-translational removal of the 24 amino acid signal sequence and the second being the presumed post-translational removal of the remaining highly charged 47 amino acid prosequence.  相似文献   

10.
Aspergillus niger NCIM 563 produced two different extracellular phytases (Phy I and Phy II) under submerged fermentation conditions at 30°C in medium containing dextrin-glucose-sodium nitrate-salts. Both the enzymes were purified to homogeneity using Rotavapor concentration, Phenyl-Sepharose column chromatography and Sephacryl S-200 gel filtration. The molecular mass of Phy I and II as determined by SDS–PAGE and gel filtration were 66, 264, 150 and 148 kDa respectively, indicating that Phy I consists of four identical subunits and Phy II is a monomer. The pI values of Phy I and II were 3.55 and 3.91, respectively. Phy I was highly acidic with optimum pH of 2.5 and was stable over a broad pH range (1.5–9.0) while Phy II showed a pH optimum of 5.0 with stability in the range of pH 3.5–9.0. Phy I exhibited very broad substrate specificity while Phy II was more specific for sodium phytate. Similarly Phy II was strongly inhibited by Ag+, Hg2+ (1 mM) metal ions and Phy I was partially inhibited. Peptide analysis by Mass Spectrometry (MS) MALDI-TOF also indicated that both the proteins were totally different. The K m for Phy I and II for sodium phytate was 2.01 and 0.145 mM while V max was 5,018 and 1,671 μmol min?1 mg?1, respectively. The N-terminal amino acid sequences of Phy I and Phy II were FSYGAAIPQQ and GVDERFPYTG, respectively. Phy II showed no homology with Phy I and any other known phytases from the literature suggesting its unique nature. This, according to us, is the first report of two distinct novel phytases from Aspergillus niger.  相似文献   

11.
Polygalacturonases are pectinolytic enzymes that catalyze the hydrolysis of the plant cell-wall pectin backbone. They are widely used in the food industry for juice extraction and clarification. Aspergillus giganteus produces one polygalacturonase (PG) on liquid Vogel medium with citrus pectin as the only carbon source. In specific applications, such as those used in the food and medicine industries, the PG must be free of substances that could affect the characteristics of the product and the process, such as color, flavor, toxicity, and inhibitors. We present here an efficient, simple, and inexpensive method for purifying the A. giganteus PG and describe the characteristics of the purified enzyme. Purified PG was obtained after two simple steps: (1) protein precipitation with 70% ammonium sulfate saturation and (2) anion-exchange chromatography on a DEAE-Sephadex A-50 column. The final enzyme solution retained 86.4% of its initial PG activity. The purified PG had a molecular weight of 69.7 kDa, exhibited maximal activity at pH 6.0 and 55–60°C, and was stable in neutral and alkaline media. It had a half-life of 115, 18, and 6 min at 40, 50 and 55°C, respectively. Purified PG showed its highest hydrolytic activity with low-esterified and nonesterified substrates, releasing monogalacturonic acid from substrate, indicating that it is an exopolygalacturonase. PG activity was enhanced in the presence of β-mercaptoethanol, dithiothreitol, Co2+, Mn2+, Mg2+, NH4 +, and Na+ and was resistant to inhibition by Pb2+.  相似文献   

12.
Two proteinases (I and II) from a marine luminous bacterium, FLN-108, were purified to homogeneity. The molecular weights of proteinases I and II were estimated to be 49,000 and 46,000, comprising a dimer of 23,000 molecular weight subunits, respectively. These enzymes were most active at from pH 8.0 to pH 9.0 and 50°C, and stable below 45°C. These enzyme activities were inhibited by EDTA and orthophenanthrolin. Phosphoramidon inhibited the activity of proteinase II, but not that of proteinase I. Metal ions such as Cu2+ , Hg2+ , and Ni2+ strongly inhibited these activities. These results indicate that the proteinases I and II are metal-chelater-sensitive, alkaline proteinases.  相似文献   

13.
Purification and characterization of tomato polygalacturonase converter   总被引:2,自引:0,他引:2  
Extracts of ripe tomatoes contain two forms of polygalacturonase (PG I and PG II). A heat-stable component that binds PG II to produce PG I has been isolated from tomato fruit. This component has been named polygalacturonase converter (PG converter). The PG converter has been purified by gel filtration, ion-exchange chromatography and chromatofocusing. It appears to be a protein with a relative molecular mass of 102000. It was readily inactivated by papain and pronase. The converter was labile at alkaline conditions, and treatment of PG I at pH 11 released free PG II. A similar factor with a lower molecular mass was extracted from tomato foliage.  相似文献   

14.
The cyclic nucleotide phosphodiesterases in crude homogenate, soluble material, and particulate preparations of adult Drosophila melanogaster flies, hydrolyze cyclic AMP with nonlinear kinetics. Cyclic GMP is hydrolyzed by the phosphodiesterases in crude homogenate and soluble material with linear kinetics. Physical separation techniques of gel filtration, velocity sedimentation, and ion-exchange chromatography reveal that Drosophila soluble fraction contains two major forms of cyclic nucleotide phosphodiesterase. Form I hydrolyzes both cyclic AMP and cyclic GMP. Inhibition experiments suggest that the hydrolysis of both cyclic nucleotides by Form I occurs at a single active site. The Km's for hydrolysis of both substrates are about 4 μm. This form has a molecular weight of about 168,000 as estimated by gel nitration. Form II cyclic nucleotide phosphodiesterase is specific for cyclic AMP as substrate. Gel filtration indicates that this form has a molecular weight of about 68,000. The Km for cyclic AMP is about 2 μm.  相似文献   

15.
Russell Pressey 《Planta》1988,174(1):39-43
A procedure was developed for the differential extraction of polygalacturonases (PG) I and II from tomatoes (Lycopersicon esculentum Mill.). Extraction of pericarp tissue from ripe fruit at conventional conditions of 1.0 M NaCl and pH 6.0 yielded nearly equal amounts of the two enzymes. However, most of the PG activity could be extracted also with water at pH 1.6, and the water extract contained only PG II. Subsequent extraction of the pellet with 1.0 M NaCl at pH 6.0 and 10.0 yielded some PG I and high levels of PG converter, the protein in tomatoes that reacts with PG II to form PG I. Application of this procedure to tomatoes at different stages of ripening showed that PG II appeared as ripening began and then increased during ripening. Much lower levels of PG I than of PG II were extracted at all stages of ripeness. The PG converter was present in unripe fruit and increased during ripening. The results demonstrate that PG I is formed when PG II and PG converter are solubilized simultaneously and that PG II is the only endogenous PG in tomatoes.Abbreviation PG polygalacturonase  相似文献   

16.
Two kinds of carboxypeptidases (F–I, F–II) were purified from the sarcocarp of watermelon (Citrullus vulgaris, var. Shimao). F–I was not purified to homogeneity. F–II was homogeneous on ultracentrifugal analysis, but a trace of impurity was detected at high concentrations by disc electrophoresis.

F–I was optimally active and stable at pH 5.0~5.5 and was strongly inhibited by DFP and HgCl2, but not by EDTA. The molecular weight and isoelectric point were 89,000 and 4.4, respectively.

F–II was optimally active at pH 5.0 ~ 5.5 and was most stable at pH 5.5 ~ 7.0. It was completely inhibited by DFP and HgCl2, but not by EDTA and 1, 10-phenanthroline, and it hydrolyzed an oligopeptide containing proline, glutamic acid, lysine and several neutral amino acids, sequentially from the C-terminal. The molecular weight and isolelectric point were 110,000 (5.1 S) and 5.0, respectively.

The similarity of enzymatic properties of both the present enzymes to those of other plant carboxypeptidases and pig kidney cathepsin A are discussed.  相似文献   

17.
ATPase was purified from an alkalophilic Bacillus. The enzyme has a molecular weight of 410,000 and consists of five types of subunits of molecular weights of 60,000 (α), 58,000 (β), 34,000 (γ), 14,000 (δ), and 11,000 (?). The subunit structure is suggested to be α3β3γδ?. The enzyme is activated by Mg2+ and Ca2+. The pH optima of the enzyme with 0.1 and 2.0 mm Mg2+ are 9 and 6, and those with 1 and 10 mm Ca2+ are 8–9 and 7, respectively. Ca2+-ATPase hydrolyzes only ATP, whereas Mg2+-ATPase hydrolyzes GTP and, to a lesser extent, ATP. The values of V and Km of the enzyme with ATP in the presence of 10 mm Ca2+ or 0.6 mm Mg2+ at pH 7.2 are 17 or 0.5 units/mg protein and 1.2 or 0.3 mm, respectively. The enzyme with Mg2+ is appreciably activated by HCO?3. Relationship of the ATPase to the active transport system in the bacterium is suggested.  相似文献   

18.
In this paper, specific PHO13 alkaline phosphatase from Saccharomyces cerevisiae was demonstrated to possess phosphoprotein phosphatase activity on the phosphoseryl proteins histone II-A and casein. The enzyme is a monomeric protein with molecular mass of 60 kDa and hydrolyzes p-nitrophenyl phosphate with maximal activity at pH 8.2 with strong dependence on Mg2+ ions and an apparent Km of 3.6×10−5 M. No other substrates tested except phosphorylated histone II-A and casein were hydrolyzed at any significant rate. These data suggest that the physiological role of the p-nitrophenyl phosphate-specific phosphatase may involve participation in reversible protein phosphorylation.  相似文献   

19.
A high molecular weight (HMW) acid phosphatase from the body wall of sea cucumber Stichopus japonicus was purified to homogeneity by a combination of anion exchange chromatography, gel filtration chromatography and high performance liquid chromatography (HPLC). The enzyme was purified 19.3-fold with a total yield of 1.2%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the purified enzyme showed a single protein band of MW 147.9 kDa. The enzyme displayed maximum activity at pH 4.0 and 50 °C with p-nitrophenyl phosphate as substrate. The enzyme activity appeared to be stable over pH 2.0–5.0 and up to 40 °C. The enzyme activity was enhanced slightly by Mg2+, whereas inhibited strongly by Cu2+ and Zn2+. The enzyme hydrolyzes several phosphate esters, suggesting a probable non-specific nature. The amino acid sequences of three segments of the purified enzyme were analyzed by mass spectroscopy, which did not have any homology with previously described acid phosphatase.  相似文献   

20.
Two isoenzymes of glucose 6-phosphate dehydrogenase (EC 1.1.1.49) have been separated from the plant fraction of soybean (Glycine max L. Merr. cv Williams) nodules by a procedure involving (NH4)2SO4 gradient fractionation, gel chromatography, chromatofocusing, and affinity chromatography. The isoenzymes, which have been termed glucose 6-phosphate dehydrogenases I and II, were specific for NADP+ and glucose 6-phosphate and had optimum activity at pH 8.5 and pH 8.1, respectively. Both isoenzymes were labile in the absence of NADP+. The apparent molecular weight of glucose 6-phosphate dehydrogenases I and II at pH 8.3 was estimated by gel chromatography to be approximately 110,000 in the absence of NADP+ and double this size in the presence of NADP+. The apparent molecular weight did not increase when glucose 6-phosphate was added with NADP+ at pH 8.3. Both isoenzymes had very similar kinetic properties, displaying positive cooperativity in their interaction with NADP+ and negative cooperativity with glucose 6-phosphate. The isoenzymes had half-maximal activity at approximately 10 micromolar NADP+ and 70 to 100 micromolar glucose 6-phosphate. NADPH was a potent inhibitor of both of the soybean nodule glucose 6-phosphate dehydrogenases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号