首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The nss (no steady state) phototransduction mutant of the sheep blowfly Lucilia was studied electrophysiologically using intracellular recordings. The effects of the nss mutation on the receptor potential are manifested in the following features of the light response. (a) The responses to a flash or to dim lights are close to normal, but the receptor potential decays close to the baseline level during prolonged illumination after a critical level of light intensity is reached. (b) The decline of the response is accompanied by a large reduction in responsiveness to light that recovers within 20 s in the dark. (c) The full reduction in responsiveness to light is reached when approximately 13% of the photopigment molecules are converted from rhodopsin (R) to metarhodopsin (M). (d) A maximal net pigment conversion from R to M by blue light induces persistent inactivation in the dark, without an apparent voltage response. This inactivation could be abolished at any time by M-to-R conversion with orange light. The above features of the mutant indicate that the effect of the nss mutation on the light response of Lucilia is very similar to the effects of the transient receptor potential (trp) mutation on the photoreceptor potential of Drosophila. Noise analysis and voltage measurements indicate that the decay of the receptor potential is due to a severe reduction in the rate of occurrence of the elementary voltage responses (bumps). The bumps are only slightly modified in shape and amplitude during the decline of the response to light of medium intensity. There is also a large increase in response latency during intense background illumination. These results are consistent with the hypothesis that separate, independent mechanisms determine bump triggering and bump shape and amplitude. The nss mutation affects the triggering mechanism of the bump.  相似文献   

2.
The response of invertebrate photoreceptors consists of the summation of quantum bumps, each representing the response to a single photon. The bumps adapt depending on the intensity of the stimulus: their average size is relatively large in dim light and small in bright light. The rate of occurrence of the bumps varies proportionally with light intensity. In the Drosophila mutant trp, unlike in the wild type, the rate does not increase with increasing light intensity and the bumps do not adapt. Here we report an analysis of the trp gene and its expression in normal and mutant flies. Our results suggest that the trp protein is a novel photoreceptor membrane-associated protein, that this protein is not required for the occurrence of bumps but is necessary for adaptation, and that proper function of the trp gene product during pupal development is important for normal visual transduction in the adult.  相似文献   

3.
The effect of lanthanum on the light response of blowfly (Calliphora erythrocephala) photoreceptors was studied. The electrophysiological behaviour of the photoreceptors in the presence of La can be summarized as follows: 1. Upon long stimulation the photoreceptors responded with a 'transient receptor potential', i.e. the cells depolarized at the onset of the stimulus and then repolarized to (or below) the resting potential. This effect was dependent on stimulus intensity and occurred only at high intensities. During illumination membrane noise was reduced. 2. The light-induced changes in membrane potential were paralleled by changes in membrane resistance. 3. The time course of the receptor response was slowed down. 4. Light adaptation led to an increase in response latency. 5. The recovery of the receptor response after light adaptation was slowed down. 6. The sensitivity of the receptor cells measured by the response to short light stimuli was reduced. In summary, the electrophysiological behaviour of Calliphora photoreceptors in the presence of La was very similar to that of the photoreceptors of the trp (transient receptor potential) mutant of Drosophila melanogaster. This result suggests that La and trp mutation affect the same cellular processes in the photoreceptors.  相似文献   

4.
The Drosophila and Lucilia photoreceptor mutants, trp and nss, respond like wild-type flies to a short pulse of intense light or prolonged dim light; however, upon continuous intense illumination, the trp and nss mutants are unable to maintain persistent excitation. This defect manifests itself by a decline of the receptor potential toward baseline during prolonged intense illumination with little change in the shape or amplitude of the quantal responses to single photons (quantum bumps). Previous work on the trp and nss mutants suggests that a negative feedback loop may control the rate of bump production. Chemical agents affecting different steps of the phototransduction cascade were used in conjunction with light to identify a possible branching point of the feedback loop and molecular stages which are affected by the mutation. Fluoride ions, which in the dark both excite and adapt the photoreceptors of wild-type flies, neither excite nor adapt the photoreceptors of the trp and nss mutants. The hydrolysis-resistant analogue, GTP gamma S, which excites the photoreceptors of wild-type flies, resulting in noisy depolarization, markedly reduces the light response of both mutant flies. Intracellular recordings revealed, however, that the inhibitory effect of GTP gamma S on the nss mutant was accompanied neither by any significant depolarization nor by an increase in the noise, and thus was very different from the effect of a dim background light. The combination of inositol trisphosphate and diphosphoglycerate (InsP3 + DPG), which efficiently excites the photoreceptors of wild-type Lucilia, also excites the photoreceptors of nss Lucilia mutant. The InsP3 + DPG together act synergistically with light to accelerate the decline of the response to light in the mutant flies. These results suggest that the fly phototransduction pathway involves a feedback regulatory loop, which branches subsequent to InsP3 production and regulates guanine nucleotide-binding protein (G protein)-phospholipase C activity. A defect in this regulatory loop, which may cause an unusually low level of intracellular Ca2+, severely reduces the triggering of bumps in the mutants during intense prolonged illumination.  相似文献   

5.
R C Hardie  B Minke 《Neuron》1992,8(4):643-651
Invertebrate phototransduction is an important model system for studying the ubiquitous inositol-lipid signaling system. In the transient receptor potential (trp) mutant, one of the most intensively studied transduction mutants of Drosophila, the light response quickly declines to baseline during prolonged intense light. Using whole-cell recordings from Drosophila photoreceptors, we show that the wild-type response is mediated by at least two functionally distinct classes of light-sensitive channels and that both the trp mutation and a Ca2+ channel blocker (La3+) selectively abolish one class of channel with high Ca2+ permeability. Evidence is also presented that Ca2+ is necessary for excitation and that Ca2+ depletion mimics the trp phenotype. We conclude that the recently sequenced trp protein represents a class of light-sensitive channel required for inositide-mediated Ca2+ entry and suggest that this process is necessary for maintained excitation during intense illumination in fly photoreceptors.  相似文献   

6.
The dependence of pigment granule migration (PGM) upon the receptor potential was examined using several strains of electroretinogram (ERG)- defective mutants of Drosophila melanogaster. The mutants that have a defective lamina component but a normal receptor component of the ERG (no on-transient A [nonA] and tan) exhibited normal pigment granule migration. The mutants that have very small or no receptor potentials (certain no receptor potential A [norpA] alleles), on the other hand, exhibited no PGM. In the case of the temperature-sensitive norpA mutant, norpAH52, normal PGM was present at 17 degrees but not at 32 degrees C or above, corresponding to its electrophysiological phenotype. In the transient receptor potential (trp) mutant, whose receptor potential decays to the baseline within a few seconds during a sustained light stimulus, the pigment granules initially moved close to the rhabdomere when light was turned on but moved away after about 5 s during a sustained light stimulus. All these results lend strong support to the notion that PGM is initiated by a light-evoked depolarization of the receptor membrane, i.e., the receptor potential. However, under certain experimental conditions, the receptor potentials failed to induce PGM in the trp mutant. The depolarization of the receptor, thus, appears to be closely associated with PGM but is not a sufficient condition for PGM.  相似文献   

7.
Summary After intense orange adapting exposures that convert 80% of the rhodopsin in the eye to metarhodopsin, rhabdoms become covered with accessory pigment and appear to lose some microvillar order. Only after a delay of hours or even days is the metarhodopsin replaced by rhodopsin (Cronin and Goldsmith 1984). After 24 h of dark adaptation, when there has been little recovery of visual pigment, the photoreceptor cells have normal resting potentials and input resistances, and the reversal potential of the light response is 10–15 mV (inside positive), unchanged from controls. The log V vs log I curve is shifted about 0.6 log units to the right on the energy axis, quantitatively consistent with the decrease in the probability of quantum catch expected from the lowered concentration of rhodopsin in the rhabdoms. Furthermore, at 24 h the photoreceptors exhibit a broader spectral sensitivity than controls, which is also expected from accumulations of metarhodopsin in the rhabdoms. In three other respects, however, the transduction process appears to be light adapted: (i) The voltage responses are more phasic than those of control photoreceptors. (ii) The relatively larger effect (compared to controls) of low extracellular Ca++ (1 mmol/1 EGTA) in potentiating the photoresponses suggests that the photoreceptors may have elevated levels of free cytoplasmic Ca++. (iii) The saturating depolarization is only about 30% as large as the maximal receptor potentials of contralateral, dark controls, and by that measure the log V-log I curve is shifted downward by 0.54 log units. The gain (change in conductance per absorbed photon) therefore appears to have been diminished.  相似文献   

8.
B Cook  B Minke 《Cell calcium》1999,25(2):161-171
Phototransduction in Drosophila is mediated by the ubiquitous phosphoinositide cascade, leading to opening of the TRP and TRPL channels, which are prototypical members of a novel class of membrane proteins. Drosophila mutants lacking the TRP protein display a response to light that declines to the dark level during illumination. It has recently been suggested that this response inactivation results from a negative feedback by calcium-calmodulin, leading to closure of the TRPL channels. It is also suggested that in contrast to other phosphoinositide-mediated systems, Ca2+ release from internal stores is neither involved in channel activation nor in phototransduction in general. We now show that inactivation of the light response in trp photoreceptors is enhanced upon reduction of the intracellular Ca2+ concentration. Furthermore, in Ca(2+)-free medium, when there is no Ca2+ influx into the photoreceptors, we demonstrate a significant elevation of intracellular Ca2+ upon illumination. This elevation correlates with ability of the cells to respond to light. Accordingly, malfunctioning of Ca2+ stores, either by Ca2+ deprivation or by application of the Ca2+ pump inhibitor, thapsigargin, confers a trp phenotype on wild type flies. The results indicate that the response inactivation in trp cells results from Ca2+ deficiency rather than from Ca(2+)-dependent negative feedback. The results also indicate that there is light-induced release of Ca2+ from intracellular stores. Furthermore, the response to light is correlated to Ca2+ release, and normal function of the stores is required for prolonged excitation. We suggest that phototransduction in Drosophila depends on Ca(2+)-release mediated signalling and that TRP is essential for the normal function of this process.  相似文献   

9.
Intracellular recordings were obtained from rods in the Gekko gekko retina and the adaptation characteristics of their responses studied during light and dark adaptation. Steady background illumination induced graded and sustained hyperpolarizing potentials and compressed the incremental voltage range of the receptor. Steady backgrounds also shifted the receptor's voltage-intensity curve along the intensity axis, and bright backgrounds lowered the saturation potential of the receptor. Increment thresholds of single receptors followed Weber's law over a range of about 3.5 log units and then saturated. Most of the receptor sensitivity change in light derived from the shift of the voltage-intensity curve, only little from the voltage compression. Treatment of the eyecup with sodium aspartate at concentrations sufficient to eliminate the beta-wave of the electroretinogram (ERG) abolished initial transients in the receptor response, possibly indicating the removal of horizontal cell feedback. Aspartate treatment, however, did not significantly alter the adaptation characteristics of receptor responses, indicating that they derive from processes intrinsic to the receptors. Dark adaptation after a strongly adapting stimulus was similarly associated with temporary elevation of membrane potential, initial lowering of the saturation potential, and shift of the voltage-intensity curve. Under all conditions of adaptation studied, small amplitude responses were linear with light intensity. Further, there was no unique relation between sensitivity and membrane potential suggesting that receptor sensitivity is controlled at least in part by a step of visual transduction preceding the generation of membrane voltage change.  相似文献   

10.
Ion-selective calcium microelectrodes were inserted into the compound eyes of the wild-type sheep blowfly Lucilia or into the retina of the no steady state (nss) mutant of Lucilia. These electrodes monitored light-induced changes in the extracellular concentration of calcium (delta[Ca2+]o) together with the extracellularly recorded receptor potential. Prolonged dim lights induced a steady reduction in [Ca2+]o during light in the retina of normal Lucilia, while relatively little change in [Ca2+]o was observed in the retina of the nss mutant. Prolonged intense light induced a multiphasic change in [Ca2+]o: the [Ca2+]o signal became transient, reaching a minimum within 6 s after light onset, and then rose to a nearly steady-state phase below the dark concentration. When lights were turned off, a rapid increase in [Ca2+]o was observed, reaching a peak above the dark level and then declining again to the dark level within 1 min. In analogy to similar studies conduced in the honeybee drone, we suggest that the reduction in [Ca2+]o reflects light-induced Ca2+ influx into the photoreceptors, while the subsequent increase in [Ca2+]o reflects the activation of the Na-Ca exchange which extrudes Ca2+ from the cells. In the nss mutant in response to intense prolonged light, the receptor potential declines to baseline during light while the Ca2+ signal is almost abolished, revealing only a short transient reduction in [Ca2+]o. Application of lanthanum (La3+), but not nickel (Ni2+), into the retinal extracellular space of normal Lucilia mimicked the effect of the nss mutation on the receptor potential, while complete elimination of the Ca2+ signal in a reversible manner was observed. The results suggest that La3+ and the nss mutation inhibit light-induced Ca2+ influex into the photoreceptor in a manner similar to the action of the trp mutation in Drosophila, which has been shown to block specifically a light-activated Ca2+ channel necessary to maintain light excitation.  相似文献   

11.
The process of light adaptation in blowfly photoreceptors was analyzed using intracellular recording techniques and double and triple flash stimuli. Adapting flashes of increasing intensity caused a progressive reduction in the excitability of the photoreceptors, which became temporarily suppressed when 3 x 10(6) quanta were absorbed by the cell. This suppression was confirmed by subsequently applying an intense test flash that photoactivated a considerable fraction of the 10(8) visual pigment molecules in the cell. The period of temporary desensitization is referred to as the refractory period. The stimulus intensity to render the receptor cell refractory was found to be independent of the extracellular calcium concentration over a range of 10(-4) and 10(-2) M. During the refractory period (30-40 ms after the adapting flash) the cell appears to be "protected" against further light adaptation since light absorption during this period did not affect the recovery of the cell's excitability. Calculations showed that the number of quantum absorptions necessary to induce receptor refractoriness is just sufficient to photoactivate every microvillus of the rhabdomere. This coincidence led to the hypothesis that the refractoriness of the receptor cells is due to the refractoriness of the individual microvilli. The sensitivity of the receptor cells after relatively weak adapting flashes was reduced considerably more than could be accounted for by the microvilli becoming refractory. A quantitative analysis of these results suggests that a photoactivated microvillus induces a local adaptation over a relatively small area of the rhabdomere around it, which includes several tens of microvilli. After light adaptation with an intense flash, photoactivation of every microvillus by the absorption of a few quanta produced only a small receptor response whereas photoactivation of every rhodopsin molecule in every microvillus produced the maximum response. The excitatory efficiency of the microvilli therefore increases with the number of quanta that are absorbed simultaneously.  相似文献   

12.
The trp (transient receptor potential) gene encodes a Ca2+ channel responsible for the major component of the phospholipase C (PLC) mediated light response in Drosophila. In trp mutants, maintained light leads to response decay and temporary total loss of sensitivity (inactivation). Using genetically targeted PIP2-sensitive inward rectifier channels (Kir2.1) as biosensors, we provide evidence that trp decay reflects depletion of PIP2. Two independent mutations in the PIP2 recycling pathway (rdgB and cds) prevented recovery from inactivation. Abolishing Ca2+ influx in wild-type photoreceptors mimicked inactivation, while raising Ca2+ by blocking Na+/Ca2+ exchange prevented inactivation in trp. The results suggest that Ca2+ influx prevents PIP2 depletion by inhibiting PLC activity and facilitating PIP2 recycling. Without this feedback one photon appears sufficient to deplete the phosphoinositide pool of approximately 4 microvilli.  相似文献   

13.
We recorded the total pulse response of the optic nerve in frogs to varying degrees of increase and decrease of light from the original adapting level. On the basis of these data, we plotted curves of dependence of the magnitude of response on the logarithm of relative value of increase and decrease of light (the amplitude characteristic — AC). The AC is steepest in the zone of adapting background and sloped on either side of it. It follows that under stationary conditions of illumination, the eye is capable of finely differentiating light intensity only within a narrow range (one logarithmic unit). After adaptation to a new level of illumination, the AC shifts along the scale of light intensity in such a way that the steepest portion corresponds to the adapting brightness. Increase in steepness of the AC occurs precisely during the process of adaptation. The contrast sensitivity of the human visual system is greatest near the adapting level and declines on either side of it. It follows that in man steepness of the visual system AC is greatest in the zone of the adapting background. Both increase and decrease of intensity of the adapting background are accompanied by a decline of contrast sensitivity, which rises again during the process of adaptation to a new level. Thanks to adaptive shift of the steep portion of the AC along the scale of light intensity, a visual system having a high contrast sensitivity only within a narrow "working" range is capable of finely differentiating light intensity in significantly changing conditions of illumination.Institute of Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 81–89, July–August, 1969.  相似文献   

14.
The static and dynamic characteristics of phototransduction were studied in photoreceptors of the compound eye of the fly Phormia regina (Calliphoridae) using a green light emitting diode driven by a controlled current source. The LED provides sufficiently intense light to investigate the behaviour of the receptors over about half of the dark adapted range of the response versus log intensity curve. The effects of constant adapting light intensities upon the step response and upon the frequency response and coherence functions were examined. Using both methods the effect of light adaptation upon receptor sensitivity can be closely approximated by a similar linear dependence of log sensitivity upon log adapting intensity. However, there was no reliably detectable effect of light adaptation upon the time constant of the response over the range of adapting intensities used.Abbreviation LED Light Emitting Diode  相似文献   

15.
Retinas from the scallop Pecten irradians were enzymatically dispersed, yielding a large number of isolated photoreceptors suitable for tight-seal recording. Whole-cell voltage clamp measurements demonstrated that the phototransducing machinery remained intact: quantum bumps could be elicited by dim illumination, while brighter flashes produced larger, smooth photocurrents. Single-channel currents specifically activated by light were recorded in cell-attached patches, and were almost exclusively confined to the rhabdomeric region. Their density is sufficiently high to account for the macroscopic photoresponse. Channel activation is graded with stimulus intensity in a range comparable to that of the whole-cell response, and can be recorded with illumination sufficiently dim to evoke only quantum bumps. Light-dependent channel openings are very brief, on average 1 ms or less at 20-22 degrees C, apparently not because of blockage by extracellular divalent cations. The mean open time does not change substantially with stimulus intensity. In particular, since dwell times are in the millisecond range even with the dimmest lights, the channel closing rate does not appear to be the rate-limiting step for the decay kinetics of discrete waves. The latency of the first opening after light onset is inversely related to light intensity, and the envelope of channel activity resembles the time course of the whole-cell photocurrent. Unitary currents are inward at resting potential, and have a reversal voltage similar to that of the macroscopic light response. Voltage modulates the activity of light-sensitive channels by increasing the opening rate and also by lengthening the mean open times as the patch is depolarized. The unitary conductance of the predominant class of events is approximately 48 pS, but at least one additional category of smaller-amplitude openings was observed. The relative incidence of large and small events does not appear to be related in a simple way to the state of adaptation of the cell.  相似文献   

16.
Light and dark adaptation in Phycomyces phototropism   总被引:3,自引:1,他引:2       下载免费PDF全文
Light and dark adaptation of the phototropism of Phycomyces sporangiophores were analyzed in the intensity range of 10(-7)-6 W X m- 2. The experiments were designed to test the validity of the Delbruck- Reichardt model of adaptation (Delbruck, M., and W. Reichardt, 1956, Cellular Mechanisms in Differentiation and Growth, 3-44), and the kinetics were measured by the phototropic delay method. We found that their model describes adequately only changes of the adaptation level after small, relatively short intensity changes. For dark adaptation, we found a biphasic decay with two time constants of b1 = 1-2 min and b2 = 6.5-10 min. The model fails for light adaptation, in which the level of adaptation can overshoot the actual intensity level before it relaxes to the new intensity. The light adaptation kinetics depend critically on the height of the applied pulse as well as the intensity range. Both these features are incompatible with the Delbruck-Reichardt model and indicate that light and dark adaptation are regulated by different mechanisms. The comparison of the dark adaptation kinetics with the time course of the dark growth response shows that Phycomyces has two adaptation mechanisms: an input adaptation, which operates for the range adjustment, and an output adaptation, which directly modulates the growth response. The analysis of four different types of behavioral mutants permitted a partial genetic dissection of the adaptation mechanism. The hypertropic strain L82 and mutants with defects in the madA gene have qualitatively the same adaptation behavior as the wild type; however, the adaptation constants are altered in these strains. Mutation of the madB gene leads to loss of the fast component of the dark adaptation kinetics and to overshooting of the light adaptation under conditions where the wild type does not overshoot. Another mutant with a defect in the madC gene shows abnormal behavior after steps up in light intensity. Since the madB and madC mutants have been associated with the receptor pigment, we infer that at least part of the adaptation process is mediated by the receptor pigment.  相似文献   

17.
Various drosophila mutants were used to dissect the electroretinogram (ERG) frequency response into components of different origins. The ommochrome granules in the receptor cell body are known to migrate in response to light, limiting the amount of light entering the rhabdomere. Comparison between the ERG frequency responses of the wild type and the mutant lacking the ommochrome granules indicates that the pigment migration reduces the amplitude gain at frequencies below 0.5 Hz. The ERG of drosophila compound eyes consists of contributions from receptor cells and the second-order cells in the lamina. Mutants with defective laminae showed a high-frequency cutoff with a corner frequency of about 20 Hz, while in wild type the response peaked in that frequency region. These results suggest that the lamina contributes mainly to the high-frequency components of the ERG transfer function. The shot noise model (Dodge et al., 1968) has been tested in drosophila by comparing the frequency response of the superimposed on the intracellular receptor potential. The results are consistent with the hypothesis that the receptor potential consists of a summation of small discrete potentials (bumps). In a mutant in which the bumps exhibit latency dispersion in response to a dim flash, the receptor showed a poor high-frequency response, the corner frequency being lowered to about 1-2 Hz. The slope of the cutoff was approximately 20 dB/dec indicating that the latency dispersion in this mutant is the major limiting factor in temporal resolution. Light-evoked high frequency oscillations have been observed in the ERG of another mutant. The oscillation was found sharply turned to light flickering at about 55 Hz.  相似文献   

18.
In previous work we have presented evidence for electrogenic Na+/Ca2+ exchange in Limulus ventral photoreceptors (1989. J. Gen. Physiol. 93:473-492). This article assesses the contributions to photoreceptor physiology from Na+/Ca2+ exchange. Four separate physiological processes were considered: maintenance of resting sensitivity, light-induced excitation, light adaptation, and dark adaptation. (a) Resting sensitivity: reduction of [Na+]o caused a [Ca2+]o-dependent reduction in light sensitivity and a speeding of the time courses of the responses to individual test flashes; this effect was dependent on the final value to which [Na+]o was reduced. The desensitization caused by Na+ reduction was dependent on the initial sensitivity of the photoreceptor; in fully dark-adapted conditions no desensitization was observed; in light-adapted conditions, extensive desensitization was observed. (b) Excitation: Na+ reduction in fully dark-adapted conditions caused a Ca2+o-dependent depolarizing phase in the receptor potential that persisted beyond the stimulus duration and was evoked by a bright adapting flash. (c) Light adaptation: the degree of desensitization induced by a bright adapting flash was Na+o dependent, being larger with lower [Na+]o. Na+ reduction enhanced light adaptation only at intensities brighter than 4 x 10(-6) W/cm2. In addition to being Na+o dependent, light adaptation was Ca2+o dependent, being greater at higher [Ca2+]o. (d) Dark adaptation: the recovery of light sensitivity after adapting illumination was Na+o dependent. Dark adaptation after bright illumination in voltage-clamped and in unclamped conditions was faster in normal-Na+ saline than in reduced Na+ saline. The final sensitivity to which photoreceptors recovered was lower in reduced-Na+ saline when bright adapting illumination was used. The results suggest the involvement of Na+/Ca2+ exchange in each of these physiological processes. Na+/Ca2+ exchange may contribute to these processes by counteracting normal elevations in [Ca2+]i.  相似文献   

19.
The early receptor potential (ERP), membrane potential, membrane resistance, and sensitivity were measured during light and/or dark adaptation in the ventral eye of Limulus. After a bright flash, the ERP amplitude recovered with a time constant of 100 ms, whereas the sensitivity recovered with an initial time constant of 20 s. When a strong adapting light was turned off, the recovery of membrane potential and of membrane resistance had time-courses similar to each other, and both recovered more rapidly than the sensitivity. The receptor depolarization was compared during dark adaptation after strong illumination and during light adaptation with weaker illumination; at equal sensitivities the cell was more depolarized during light adaptation than during dark adaptation. Finally, the waveforms of responses to flashes were compared during dark adaptation after strong illumination and during light adaptation with weaker illumination. At equal sensitivities (equal amplitude responses for identical flashes), the responses during light adaptation had faster time-courses than the responses during dark adaptation. Thus neither the photochemical cycle nor the membrane potential nor the membrane resistance is related to sensitivity changes during dark adaptation in the photoreceptors of the ventral eye. By elimination, these results imply that there are (unknown) intermediate process(es) responsible for adaptation interposed between the photochemical cycle and the electrical properties of the photoreceptor.  相似文献   

20.
Invertebrate photoreceptors use the inositol-lipid signaling cascade for phototransduction. A useful approach to dissect this pathway and its regulation has been provided by the isolation of Drosophila visual mutants. We measured extracellular changes of Ca2+ [delta Ca2+]o in Drosophila retina using Ca(2+)-selective microelectrodes in both the transient receptor potential (trp) mutant, in which the calcium permeability of the light-sensitive channels is greatly diminished and in the inactivation-but-no-afterpotential C (inaC) mutant which lacks photoreceptor-specific protein kinase C (PKC). Illumination induced a decrease in extracellular [Ca2+] with kinetics and magnitude that changed with light intensity. Compared to wild-type, the light-induced decrease in [Ca2+]o (the Ca2+ signal) was diminished in trp but significantly enhanced in inaC. The enhanced Ca2+ signal was diminished in the double mutant inaC;trp indicating that the effect of the trp mutation overrides the enhancement observed in the absence of eye-PKC. We suggest that the decrease in [Ca2+]o reflects light-induced Ca2+ influx into the photoreceptors and that the trp mutation blocks a large fraction of this Ca2+ influx, while the absence of eye specific PKC leads to enhancement of light-induced Ca2+ influx. This suggestion was supported by Ca2+ measurements in isolated ommatidia loaded with the fluorescent Ca2+ indicator, Ca Green-5N, which indicated an approximately threefold larger light-induced increase in cellular Ca2+ in inaC relative to WT. Our observations are consistent with the hypothesis that TRP is a light activated Ca2+ channel and that the increased Ca2+ influx observed in the absence of PKC is mediated mainly via the TRP channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号