首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 693 毫秒
1.
Summary The workerless, inquiline ant,Doronomyrmex kutteri has isolated populations with a haploid chromosome number ofn=23 both in the Alps (Swiss and South Tyrolean Alps) and in Sweden, and a population withn=25 in southern Germany. Crossbreeding of sexuals from all populations proved successful. Backcrosses of F1-females with males from the parental populations produced F2-females, and hybrid males withn=23, 24, or 25 chromosomes. The chromosome polymorphism is not due to B-chromosomes. Probably then=25 karyotype originated from then=23 karyotype by two Robertsonian fissions (2 ¯M 4 ¯A), since then=25 karyotype was found in only one of the populations. Diploid males occurred frequently in colonies from four out of five sites investigated.  相似文献   

2.
Genus Scytodes includes most species of the spider family Scytodidae. Until now, 187 species of the genus have been described. In spite of this great diversity, only three Scytodes species were karyotyped so far. The present paper provides for the first time karyotype analysis of two synanthropic species, Scytodes fusca and Scytodes itapevi. Furthermore, new data on karyotype of Scytodes globula are also provided using conventional and differential cytogenetical procedures. The diploid number in the genus Scytodes varied considerably, namely from 2n = 13 to 2n = 31. The diploid number found in S. globula (2n♂ = 13) is the lowest in haplogyne spiders with monocentric chromosomes. Except S. globula, this number has been found only in one haplogyne spider with monocentric chromosomes, namely Ochyrocera sp. (Ochyroceratidae). On the contrary, the diploid number of S. fusca (2n♂ = 31) is one of the highest diploid numbers recorded in haplogyne spiders. The degree of intrageneric variation found in the genus Scytodes is the highest recorded in araneomorph spiders with monocentric chromosomes so far. Some karyotype characteristics (diploid number, chromosome morphology, total chromosome length, and distribution of constitutive heterochromatin) allowed us to postulate a close relationship between S. globula and S. itapevi. According to the karyotype data, S. fusca is not closely related to these two species. This conclusion corroborates a recent taxonomic work that grouped S. globula, S. itapevi, and other four Scytodes species in the ‘globula group’.  相似文献   

3.
The first cytogenetic analysis of fireflies from Brazilian fauna was carried out in this work. The investigation of two species of the subfamily Lampyrinae, Aspisoma maculatum and Photinus sp. (aff. pyralis), showed the diploid number 2n = 19 and an X0 sex determination system in males. These observations are similar to those already described for all the Lampyrinae species previously studied. In contrast, Bicellonycha lividipennis (Photurinae) revealed the karyotype 2n = 16 + neoXY, which has not yet been registered for any firefly species. The neoXY sex determination system encountered in this species probably arose through fusion between an ancestral X sex chromosome, belonging to the X0 system, and an autosomal element. This event also reduced the diploid number from 2n = 19, which is more frequent in the family Lampyridae, to 2n = 18 in B. lividipennis. The analysis of meiotic cells showed that the neoXY sexual bivalent of B. lividipennis exhibited a prominent terminal chiasma, indicating that the sex chromosomes are not wholly differentiated and still retain a region of homology. A review of the cytogenetic data known for the family Lampyridae was also documented in this work, as well as a discussion on the main trends of chromosomal evolution that seem to have occurred in this group.  相似文献   

4.
Cytogenetic studies have shown that New World primates are karyologically diverse and highly derived. The genus Callicebus is the best example of this karyological diversity, with diploid numbers ranging from 2n=50 to 2n=16. We report on Callicebus lugens, which has the lowest diploid number (2n=16) yet found in the primate order and represents a striking example of extreme karyotypic shuffling. To better understand the genomic rearrangements that have resulted in this extremely low diploid number, we mapped chromosome homologies between C. lugens and humans by in situ hybridization. The total number of hybridization signals was 42, excluding the Y chromosome, with a total of 34 syntenic associations not found in humans. This species has one of the most derived karyotypes among the Platyrrhini. Fusion has been the predominant mode of karyological evolution, although fissions and inversions have also transformed the C. lugens karyotype. Remarkably in such a highly rearranged karyotype, the synteny of 11 human chromosomes (4, 5, 9, 12, 13, 14, 17, 18, 20, 21, and X) was maintained intact, even if most of these human-homologous gene clusters were translocated. Other human syntenies, such as homologues to human chromosomes 10 and 16, were highly fragmented. Comparisons of the C. lugens-human homology map with those of other New World primates have not yet helped establish a phylogenic arrangement between congeneric species or link Callicebus with any other genus.Communicated by S. Henikoff  相似文献   

5.
The Heptapteridae family is endemic to the Neotropics and is one of the most representative members of the Siluriformes order in small bodies of water. Due the lack of data for clearly distinguishing their species, only recently was elevated from condition of subfamily to family. However, many doubts about certain species remain yet. There are a relatively large number of cytogenetics studies about heptapterids that permits comparative analyses focused in the karyotype evolution of the group. However, the absence of studies about this theme motivated this work. Were analyzed cytogenetically most representative species of the family: Rhamdia, Imparfinis, Pimelodella, Phenacorhamdia, and Taunaya, and compared with available data from the family. The comparative analysis indicated the predominance of biarmed chromosomes and low variation of the diploid number (around 2n = 58) suggesting that centric inversions were more important than centric fissions in the history of heptapterids. It is corroborated by a remarkable number of NOR phenotypes mainly in Imparfinis and Rhamdia species. A probable condition of Heptapteridae plesiomorphic karyotype would be one composed of 2n = 58 chromosomes of types metacentric and submetacentric mainly, with simple NOR at the sub terminal position. The reduction of diploid number, it would possibly through successive events of chromosome fusion with deletions and inversion rearrangements responsible for NOR variation within the certain genus. The occurrence of B chromosomes is from a derived event, possibly of recent origin, without phylogenetic implications.  相似文献   

6.
Classifications of Theaceae have usually placed the endangered monotypic genus Apterosperma in tribe Schimeae (x=18), whereas recent molecular phylogenetic evidence supports its transfer to tribe Theeae (x=15). Molecular data have not resolved the phylogenetic position of Apterosperma within Theeae. We investigated the chromosome number and karyotype of Apterosperma in the context of molecular and morphological phylogenetic evidence to provide further insight into the placement of Apterosperma within Theaceae. The chromosome number and karyotype was found to be 2n = 30 = 26m + 4sm, consistent with the transfer of Apterosperma to tribe Theeae. When the chromosome data were incorporated into a data set of 46 other nonmolecular characters, Apterosperma was placed as the first-diverging lineage within the clade comprising tribe Theeae. This supports its placement based on molecular data. The low intrachromosomal asymmetry (type 1A) of Apterosperma, presumably ancestral for the family, is also consistent with this placement. Character optimization strongly supports a base chromosome number of x=15 for tribe Theeae. Because of variable and sometimes conflicting chromosome count reports of species in tribes Schimeae and Stewartieae, the base chromosome number of Theaceae could be either x=15 or 17.  相似文献   

7.
The karyotype of Oreochromis species is considered to be highly conserved, with a diploid chromosome complement of 2n = 44. Here we show, by analysis of mitotic and meiotic chromosomes, that the karyotype of O. karongae, one of the Lake Malawi chambo species, is 2n = 38. This difference in chromosome number does not prevent the production of inter-specific hybrids between O. niloticus (2n = 44) and O. karongae (2n = 38). Analysis of the meiotic chromosomes of the O. niloticus × O. karongae hybrids indicates that three separate chromosome fusion events have occurred in O. karongae. Comparison of the O. karongae and O. niloticus karyotypes suggests that these consist of one Robertsonian fusion and two fusions of a more complex nature.  相似文献   

8.
The Vernonieae tribe presents strong taxonomic delimitation problems as it is considered one of the most complex groups of the Asteraceae family, comprising approximately 1100 species distributed across 129 genera. In this study, a comparative analysis of the Vernonieae species was performed to understand the events involved in the chromosome evolution of these species and to further deduce their taxonomy. The representatives were cytogenetically characterized via analyses of morphology, karyotype asymmetry and differential staining with fluorochromes CMA and DAPI as well as FISH. According to morphometric data, all species showed symmetrical karyotypes with prevailing metacentric chromosomes, even in species belonging to different genera. Variability in diploid chromosome number was detected (2n = 18 to 2n = 60), and chromosome sizes were observed to be between 1.00 and 4.09 μm. Additionally, variation in the pattern of heterochromatin was observed mainly in relation to CMA+ bands, in which the number varied from 4 to 16 heterochromatic regions. Only one species, Vernonia scorpioides, presented positive DAPI bands, which were located in the terminal position in most of the chromosomes. The differences in the sizes and quantities of heterochromatic bands may be related to small structural rearrangements during karyotype evolution of the Vernonieae tribe.  相似文献   

9.
Haploid chromosome numbers (n) of parasitic Hymenoptera (= traditional Parasitica + Chrysidoidea) vary from 2 to 23. However, this range can be subdivided into three intervals with n= 14–23 (less derived parasitic wasps, e.g., some Ichneumonidae and Braconidae as well as Gasteruptiidae), 8–13 (many other parasitic Hymenoptera) and 2–7 (Dryinidae, the majority of Chalcidoidea and some advanced Braconidae, e.g. Aphidiinae). The symmetric karyotype with a relatively high chromosome number (n= 14–17) and the prevalence of biarmed chromosomes must be considered as a groundplan feature of parasitic Hymenoptera. Independent reductions of chromosome numbers (n≤ 10–11) occurred in some groups of the superfamily Ichneumonoidea as well as in the common ancestor of the Proctotrupoidea sensu lato, Ceraphronoidea, Cynipoidea and Chalcidoidea. Further multiple decreases in chromosome numbers (n≤ 4–6) took place in some Braconidae, various lineages of the superfamily Chalcidoidea as well as in the family Dryinidae. Two main trends prevailed in the karyotype evolution of parasitic wasps: the reduction of chromosome numbers (mainly due to tandem fusions and less frequently due to centric ones) and karyotypic dissymmetrization (through an increase in size differentiation of chromosomes and/or in the share of acrocentrics in a chromosome set). Although karyotypic features of parasitic Hymenoptera can be used for solving taxonomic problems at various levels, this method is the most effective at the species level.  相似文献   

10.
为探究黄藤(Daemonoropsjenkinsiana)染色体核型和基因组的大小,采用体细胞染色体常规制片法与显微摄影技术相结合的方法,对黄藤染色体进行了核型分析,同时以番茄(Lycopersicon esculentum)为内标,应用流式细胞术对黄藤叶片基因组大小、DNA含量和DNA倍性进行了测定。结果表明,黄藤茎尖是理想的染色体制片材料;黄藤的染色体数为2n=24,核型公式为K(2n)=1M+17m+5sm+1st,核型类型为2C;核型不对称系数61.20%;黄藤的DNA含量为1.57 pg,基因组大小为1 539.53 Mb,黄藤的DNA倍性为二倍体(2n)。这是首次报道黄藤的核型和基因组大小,为深入开展黄藤属及其近缘属植物的核型和基因组比较分析提供了参考依据。  相似文献   

11.
Abstract

Cytotaxonomical studies in Artemisia vulgaris L. and Artemisia verlotorum Lamotte. — Karyotype analysis of A. vulgaris and A. verlotorum has shown in the first species, in agreement with previous data, a chromosome number of 2n=16 and in the second the chromosome number of 2n=48 which does not agree with previous data. This seems to be the first case of polyploidy observed in Artemisia with basic number eight. A few specimens of A. verlotorum had shown 2n=48 + 2B chromosomes. The comparison of karyotypes has shown that, while the two species have, in some respect, the same degree of symmetry (ΣL%=57; ΣC9% = 43), the quality of their chromosomes is different (see karyotype formulas). We see no explanation for such an unlikely phenomenon.  相似文献   

12.
We made a cytogenetic analysis of four species of Oxyopidae and compared it with the karyotype data of all species of this family. In Hamataliwa sp, the mitotic cells showed 2n♂ = 26+X(1)X(2) and telocentric chromosomes. The 2n♂ = 28, which has been described for only one oxyopid spider, is the highest diploid number reported for this family. Peucetia species exhibited distinct karyotype characteristics, i.e., 2n♂ = 20+X(1)X(2) in P. flava and 2n♂ = 20+X in P. rubrolineata, revealing interspecific chromosome variability within this genus. However, both Peucetia species exhibited telocentric chromosomes. The most unexpected karyotype was encountered in Oxyopes salticus, which presented 2n♂ = 10+X in most individuals and a predominance of biarmed chromosomes. Additionally, one male of the sample of O. salticus was heterozygous for a centric fusion that originated the first chromosomal pair and exhibited one supernumerary chromosome in some cells. Testicular nuclei of Hamataliwa sp and O. salticus revealed NORs on autosomal pairs, after silver impregnation. The majority of Oxyopidae spiders have their karyotype differentiated by both reduction in diploid number chromosome number and change of the sex chromosome system to X type; however, certain species retain the ancestral chromosome constitution 2n = 26+X1X2. The most remarkable karyotype differentiation occurred in O. salticus studied here, which showed the lowest diploid number ever observed in Oxyopidae and the second lowest registered for Entelegynae spiders.  相似文献   

13.
Ueno K  Ota K  Kobayashi T 《Genetica》2001,111(1-3):133-142
The karyotype and DNA content of four lizardfish species (family Synodontidae), that is, Saurida elongata, Synodus ulae, Synodus hoshinonis and Trachinocephalus myops, were analyzed. The karyotype of T. myops significantly differed from that of the other three species having diploid chromosome number of 48 with mainly acrocentric chromosomes and the ZZ-ZW sex chromosome system. The chromosome number of male T. myops was 2n=26, while that of female T. myops was 2n=27. The karyotype consisted of 11 pairs of metacentrics, one pair of acrocentrics and, in addition, two large metacentrics in the male and a single large metacentric, a distinctly small subtelocentric and a microchromosome in the female. C-banding demonstrated that in the female the subtelocentric chromosome and the microchromosome were heterochromatic. The karyotype of T. myops was thought to be derived from a 48 chromosome type synodontid fish through the involvement of Robertsonian rearrangement; the rearrangement of the sex chromosomes proceeded during karyotype evolution. Among the chromosomes, the large metacentrics were determined to be neo-Z (a fusion of the original Z and an autosome), the microchromosomes the W1 (originally W), and the subtelocentric chromosomes the W2 (derived from an autosome pair). The miniaturization of W1 and W2 chromosomes and their heterochromatinization suggested that sex chromosomes in this species have been already highly differentiated. The findings on DNA content implied that the karyotype of T. myops evolved by centric fusion events without loss in DNA amount.  相似文献   

14.
Chromosome numbers are now known for 153 species in 21 genera of Lobelioideae (Campanulaceae); this represents almost 13% of the species and 70% of the genera in the subfamily. Numbers reported are n = 6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 21, 35, 70. The subfamily as a whole has x = 7; the best documented exception is Downingia and its allies with x = 11. Only four genera show interspecific variation in chromosome number: Downingia (n = 6, 8, 9, 10, 11, 12); Lobelia (n = 6, 7, 9, 12, 13, 14, 19, 21); Pralia (n = 6, 7, 13, 14, 21, 35, 70); and Solenopsis (n = 11, 14). Intraspecific variation occurs in 13 species, with as many as four different cytotypes in one species. The herbaceous members of the subfamily as a group are quite variable, showing the entire range of chromosome numbers, including numerous dysploids, but are predominantly diploid. The woody species, by contrast, are much less variable; nearly all of the species are tetraploid, with only a few diploids and hexaploids and no dysploid numbers known. These data support the hypothesis that woodiness is apomorphic within the subfamily. A general trend of higher chromosome numbers at higher latitudes and higher elevations is evident within the subfamily. The chromosome number of Apetahia raiateensis (n = 14) is reported here for the first time, on the basis of a count made about 30 years ago by Peter Raven.  相似文献   

15.
The karotypes of eleven species of the South American burrowing rodents, genus Ctenomys are described, and information on the somatic number of two other species of the same genus is given. The studied species are: C. torquatus (2n =68), C. tuconax (2n =61), C. minutus (2n=50), C. talarum (2n= 48), C. porteousi (2n=48), C. cf. minutus (2n=48), C. australis (2n=46), C. azarae (2n=48), C. latro (2n=42), C. magellanicus fueguinus (2n=36), C. tucumanus (2n=28), C. opimus luteolus (2n=26), and C. occultus (2n =22). This extreme intrageneric variation in somatic number is also reflected by a great amount of diversity in chromosome structure. Karyotypes seem to be rather constant at the species level. Autosomal polymorphism has been found in two of the species, namely C. talarum and C. latro. The hypothesis of the superimposition of Robertsoman rearrangements, pericentric inversions and translocations in the evolution of the karyotype of Ctenomys is advanced. The direction of chromosome change, either toward increase or decrease in chromosome number, is discussed. It is emphasized that high chromosome multiformity is correlated in Ctenomys with a rapid and explosive pattern of species diversification; the meaning of the small size of populations in enhancing the role of chromosome rearrangements in the evolution of Ctenomys is discussed.  相似文献   

16.
Here, we study karyotype divergence in the closely related genera Brasiliorchis, Christensonella and Trigonidium belonging to subtribe Maxillariinae of subfamily Epidendroideae (Orchidaceae). We compare karyotypes in 15 species by (1) measuring 1C genome sizes, (2) mapping the distribution of 4′,6‐diamidino‐2‐phenylindole and chromomycin A3 chromosome bands and (3) localizing 5S and 45S nuclear ribosomal DNA (rDNA) sequences using fluorescent in situ hybridization. Recently, phylogenetic studies have been conducted to resolve species and genera relationships in subtribe Maxillariinae. We used these phylogenetic trees to map the cytogenetic characters in an evolutionary framework. This has enabled a better understanding of the patterns of genomic divergence in the group. Genome sizes range from 1C = 1.85 to 4.1 pg. The largest, B. schunkeana, shows evidence of genome upsizing, probably through the acquisition of tandem repeats that now form large 4′,6‐diamidino‐2‐phenylindole‐positive blocks of heterochromatin. Our cytogenetic data are consistent with a base chromosome number of 2n = 40, although Christensonella is characterized by a dysploid reduction in chromosome number to 2n = 36. The number of 5S and 45S rDNA sites is variable between species, consistent with high rates of karyotype divergence. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 29–39.  相似文献   

17.
The karyotype of individuals of the species Rhinolophus hipposideros from Spain present a chromosome number of 2n = 54 (NFa = 62). The described karyotype for these specimens is very similar to another previously described in individual from Bulgaria. However, the presence of one additional pair of autosomal acrocentric chromosomes in the Bulgarian karyotype and the differences in X chromosome morphology indicated that we have described a new karyotype variant in this species. In addition, we have analyzed several clones of 1.4 and 1 kb of a PstI repeated DNA sequence from the genome of R. hipposideros. The repeated sequence included a region with high identity with the 5S rDNA genes and flanking regions, with no homology with GenBank sequences. Search for polymerase III regulatory elements demonstrated the presence of type I promoter elements (A-box, Intermediate Element and C-box) in the 5S rDNA region. In addition, upstream regulatory elements, as a D-box and Sp1 binding sequences, were present in flanking regions. All data indicated that the cloned repeated sequences are the functional rDNA genes from this species. Finally, FISH demonstrated the presence of rDNA in nine chromosome pairs, which is surprising as most mammals have only one carrier chromosome pair.  相似文献   

18.
Five species of the subfamily Thericleinae from East Africa show various types of cryptochiasmatic meiosis in the male, in which the chiasmata are not visible in prophase and are only revealed in the course of first metaphase. Several of these species have very large chromosomes. Two species belonging to the subfamily Miraculinae, from Madagascar have 2 n=25 acrocentric chromosomes, the highest number known in the Eumastacidae. Their meiosis is of the normal type. — Eighteen species of the subfamily Pseudoschmidtiinae, also from Madagascar have, for the most part, small chromosomes and a very uniform karyotype, of 2 n=21 acrocentrics. A species of Xenomastax has acquired an X1X2Y sex chromosome mechanism as a result of two successive chromosomal fusions. A fusion beween autosomes has reduced the chromosome number to 2 n=19 in the genus Tetefortina. The male meiosis of the Pseudoschmidtiinae is quite orthodox. — Two species of Eumastacids belonging to the subfamily Mastacideinae, from South India, show 2 n=21 acrocentrics. The male meiosis is quite orthodox, with a rather high chiasma frequency. — Three South American species of Eumastacidae, belonging to the subfamilies Paramastacinae, Parepisactinae and Eumastacinae respectively, have karyotypes which seem to be very different from those of the Old World subfamilies that have been studied. Meiosis is normal.The cytological evidence thus confirms the view of systematists that the evolutionary divergence of the subfamilies of Eumastacidae is very considerable, and presumably ancient. As far as we can tell, each subfamily may be characterized by a typical or primitive karyotype. There have been fewer evolutionary fusions of chromosomes in the Thericleinae and Pseudoschmidtiinae than in the Morabinae and no chromosomal dissociations are known to have occurred in the two former subfamilies.Affectionately dedicated to Sally Hughes-Schrader, whose work has enlarged our cytogenetic horizons so greatly, on her 75th birthday, January 25, 1970.Supported by Public Health Service Grant No. GM-07212 from the Division of General Medical Sciences, U.S. National Institutes of Health and by a grant from the Australian Research Grants Committee.  相似文献   

19.
Previous studies have shown a dynamic karyotype evolution and the presence of complex sex chromosome systems in three cryptic Leptidea species from the Western Palearctic. To further explore the chromosomal particularities of Leptidea butterflies, we examined the karyotype of an Eastern Palearctic species, Leptidea amurensis. We found a high number of chromosomes that differed between the sexes and slightly varied in females (i.e. 2n = 118–119 in females and 2n = 122 in males). The analysis of female meiotic chromosomes revealed multiple sex chromosomes with three W and six Z chromosomes. The curious sex chromosome constitution [i.e. W1–3/Z1–6 (females) and Z1–6/Z1–6 (males)] and the observed heterozygotes for a chromosomal fusion are together responsible for the sex‐specific and intraspecific variability in chromosome numbers. However, in contrast to the Western Palearctic Leptidea species, the single chromosomal fusion and static distribution of cytogenetic markers (18S rDNA and H3 histone genes) suggest that the karyotype of L. amurensis is stable. The data obtained for four Leptidea species suggest that the multiple sex chromosome system, although different among species, is a common feature of the genus Leptidea. Furthermore, inter‐ and intraspecific variations in chromosome numbers and the complex meiotic pairing of these multiple sex chromosomes indicate the role of chromosomal fissions, fusions, and translocations in the karyotype evolution of Leptidea butterflies.  相似文献   

20.
Despite extensive literature on the diversity of karyotypes in Allium is available, no attempt to analyse these data together, within a robust phylogenetic framework, has been carried out so far. Thus, we examined patterns and trends in chromosome evolution across the genus. Based on literature survey, karyo-morphometric features for 207 species belonging to 12 subgenera of Allium were obtained. Included in the data-set were basic chromosome number (x), somatic chromosome number (2n), total haploid (monoploid) chromosome length (THL) and three different measures defining karyotype structure: CVCI, measuring how heterogeneous are centromeres positions in a karyotype, CVCL and MCA, quantifying interchromosomal and intrachromosomal karyotype asymmetry, respectively. Trends in karyotype evolution were analysed by phylogenetic regressions and independent contrasts. Mean karyotypes highlighted differences and similarities in karyotype structure between the 12 subgenera. Further differences were noted when the two parameters for analysing karyotype asymmetry were assessed. In addition, by examining the effects of increasing karyotype dimensions (a proxy for genome size) on karyotype structure and asymmetry, it was shown that in Allium species, the DNA was added proportionally to their arm lengths. Overall, p = 8 and somehow intermediate karyotype asymmetry levels seem to represent plesiomorphic character-states in Allium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号