首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present study, we investigated the role of p53 in G(2) checkpoint function by determining the mechanism by which p53 prevents premature exit from G(2) arrest after genotoxic stress. Using three cell model systems, each isogenic, we showed that either ectopic or endogenous p53 sustained a G(2) arrest activated by ionizing radiation or adriamycin. The mechanism was p21 and retinoblastoma protein (pRB) dependent and involved an initial inhibition of cyclin B1-Cdc2 activity and a secondary decrease in cyclin B1 and Cdc2 levels. Abrogation of p21 or pRB function in cells containing wild-type p53 blocked the down-regulation of cyclin B1 and Cdc2 expression and led to an accelerated exit from G(2) after genotoxic stress. Thus, similar to what occurs in p21 and p53 deficiency, pRB loss can uncouple S phase and mitosis after genotoxic stress in tumor cells. These results indicate that similar molecular mechanisms are required for p53 regulation of G(1) and G(2) checkpoints.  相似文献   

2.
Murine erythroleukemia cells that lack endogenous p53 expression were transfected with a temperature-sensitive p53 allele. The temperature-sensitive p53 protein behaves as a mutant polypeptide at 37 degrees C and as a wild-type polypeptide at 32 degrees C. Three independent clones expressing the temperature-sensitive p53 protein were characterized with respect to p53-mediated G1 cell cycle arrest, apoptosis, and differentiation. Clone ts5.203 responded to p53 activation at 32 degrees C by undergoing G1 arrest, apoptosis, and differentiation. Apoptosis was seen in cells representative of all phases of the cell cycle and was not restricted to cells arrested in G1. The addition of a cytokine (erythropoietin, c-kit ligand, or interleukin-3) to the culture medium of ts5.203 cells blocked p53-mediated apoptosis and differentiation but not p53-mediated G1 arrest. These observations indicate that apoptosis and G1 arrest can be effectively uncoupled through the action of cytokines acting as survival factors and are consistent with the idea that apoptosis and G1 arrest represent separate functions of p53. Clones ts15.15 and tsCB3.4 responded to p53 activation at 32 degrees C by undergoing G1 arrest but not apoptosis. We demonstrate that tsCB3.4 secretes a factor with erythropoietin-like activity and that ts15.15 secretes a factor with interleukin-3 activity and suggest that autocrine secretion of these cytokines blocks p53-mediated apoptosis. These data provide a framework in which to understand the variable responses of cells to p53 overexpression.  相似文献   

3.
4.
5.
Targeting checkpoint kinases has been shown to have a potential chemosensitizing effect in cancer treatment. However, inhibitors of such kinases preferentially abrogate the DNA damage-induced G2 checkpoint in p53-/- as opposed to p53+/+ cells. The mechanisms by which p53 (TP53) can prevent abrogation of the G2 checkpoint are unclear. Using normal human diploid p53+/+ and p53-/- fibroblasts as model systems, we have compared the effects of three checkpoint inhibitors, caffeine, staurosporine and UCN-01, on gamma-radiation-induced G2 arrest. The G2 arrest in p53+/+ cells was abrogated by caffeine, but not by staurosporine and UCN-01, whereas the G2 arrest in p53-/- cells was sensitive to all three inhibitors. Chk2 (CHEK1) phosphorylation was maintained in the presence of all three inhibitors in both p53+/+ and p53-/- cells. Chk1 phosphorylation was maintained only in the presence of staurosporine and UCN-01 in p53+/+ cells. In the presence of caffeine Chk1 phosphorylation was inhibited regardless of p53 status. The pathway of Chk1 phosphorylation --> Cdc25A degradation --> inhibition of cyclin B1/Cdk1 activity --> G2 arrest is accordingly resistant to staurosporine and UCN-01 in p53+/+ cells. Moreover, sustained phosphorylation of Chk1 in the presence of staurosporine and UCN-01 is strongly related to phosphorylation of p53. The present study suggests the unique role of Chk1 in preventing abrogation of the G2 checkpoint in p53+/+ cells.  相似文献   

6.
Polo-like kinase 1 (Plk1) is elementary for cell proliferation and its deregulation is involved in tumorigenesis. Plk1 has been established as one of the most attractive targets for molecular cancer therapy. In fact, multiple small molecule inhibitors targeting either the kinase domain or the Polo-box binding domain (PBD) of Plk1 have been identified and intensively investigated. Intriguingly, Plk1 depletion affects more cancer cells than normal cells. It is also reported that the cytotoxicity induced by Plk1 inhibition is elevated in cancer cells with defective p53. The data lead to the hypothesis that p53 might be a predictive marker for the response of Plk1 inhibition. In this study, we demonstrate that there is no obvious different cytotoxic response between cancer cells with and without functional p53, including the isogenic colon cancer cell lines HCT116p53(+/+) and HCT116p53(-/-), breast cancer cell line MCF7, lung cancer cell line A549 and cervical carcinoma cell line HeLa, after treatment with either siRNA against Plk1, the kinase domain inhibitors BI 2536 and BI 6727 or the PBD inhibitor Poloxin. We suggest that the p53 status is not a predictor for the response of Plk1 inhibition, at least not directly. Yet, the long-term outcomes of losing p53, such as genome instability, could be associated with the cytotoxicity of Plk1 inhibition. Further studies are required to investigate whether other circumstances of cancer cells, such as DNA replication/damage stress, mitotic stress, and metabolic stress, which make possibly the survival of cancer cells more dependent on Plk1 function, are responsible for the sensitivity of Plk1 inhibition.  相似文献   

7.
The p53 protein is crucial for adapting programs of gene expression in response to stress. Recently, we revealed that this occurs partly through the formation of stress-specific p53 binding patterns. However, the mechanisms that generate these binding patterns remain largely unknown. It is not established whether the selective binding of p53 is achieved through modulation of its binding affinity to certain response elements (REs) or via a chromatin-dependent mechanism. To shed light on this issue, we used a microsphere assay for protein-DNA binding to measure p53 binding patterns on naked DNA. In parallel, we measured p53 binding patterns within chromatin using chromatin immunoprecipitation and DNase I coupled to ligation-mediated polymerase chain reaction footprinting. Through this experimental approach, we revealed that UVB and Nutlin-3 doses, which lead to different cellular outcomes, induce similar p53 binding patterns on naked DNA. Conversely, the same treatments lead to stress-specific p53 binding patterns on chromatin. We show further that altering chromatin remodeling using an histone acetyltransferase inhibitor reduces p53 binding to REs. Altogether, our results reveal that the formation of p53 binding patterns is not due to the modulation of sequence-specific p53 binding affinity. Rather, we propose that chromatin and chromatin remodeling are required in this process.  相似文献   

8.
p53 plays a critical role as a tumour-suppressor in restricting the proliferation of damaged cells, thus preventing formation of genetically altered cell clones. Its inactivation leads, in particular, to accumulation of polyploid and aneuploid cells. To elucidate the role of p53 in control of chromosome number, we analysed its participation in the cell cycle checkpoints controlling: (1) spindle assembly; and (2) G1-to-S transitions in cells with disintegrated microtubule cytoskeleton. Treatment with 8-10 ng/ml of colcemid causing no visible destruction of the spindle leads to arrest of metaphase-to-anaphase transition in both p53-positive and p53-negative murine fibroblasts, as well as in p53-positive REF52 cells and their counterparts (where the p53 function was inactivated by transduction of dominant-negative p53 fragment). Furthermore, p53-positive and p53-defective rodent and human cells showed no significant difference in kinetics of metaphase-to-interphase transitions in cultures treated with high colcemid doses preventing spindle formation. These data argue against the hypothesis that p53 is a key component of the spindle-assembly checkpoint. However, p53 mediates activation of the G1 checkpoint in response to depolymerization of microtubules in interphase cells. Treatment of synchronized G0/G1 cells with colcemid causes arrest of G1-to-S transition. Inactivation of the p53 function by transduction of dominant-negative p53 fragment abolishes the G1 checkpoint that prevents entry into S phase of cells with disrupted microtubules. Transduction of kinase-defective dominant-negative c- raf mutant or application of PD 098059, a specific inhibitor of MEK1, also abrogates the G1 cell cycle arrest in cells with disintegrated microtubule system. It seems that Raf-MAP-kinase signalling pathways are responsible for p53 activation induced by depolymerization of microtubules.  相似文献   

9.
Wei W  Herbig U  Wei S  Dutriaux A  Sedivy JM 《EMBO reports》2003,4(11):1061-1066
Current models envision replicative senescence to be under dual control by the p53 and retinoblastoma (RB) tumour-suppressor pathways. The role of the p16INK4a–RB pathway is controversial, and the function of RB in human cells has not been tested directly. We used targeted homologous recombination to knock out one copy of RB in presenescent human fibroblasts. During entry into senescence, RB+/− cells underwent spontaneous loss of heterozygosity and the resultant RB−/− clones bypassed senescence. The extended lifespan phase was eventually terminated by a crisis-like state. The same phenotype was documented for p21 CIP1/WAF1 and p53 heterozygous cells, indicating that loss of function of all three genes results in failure to establish senescence. By contrast, the abolition of p16 function by the expression of a p16-insensitive cyclin-dependent kinase 4 protein or siRNA-mediated knockdown provided only minimal lifespan extension that was terminated by senescence. We propose that p53, p21 and RB act in a linear genetic pathway to regulate cell entry into replicative senescence.  相似文献   

10.
11.
12.
Poly(ADP-ribosyl)ation of mutant and wild-type p53 was studied in transformed and nontransformed rat cell lines constitutively expressing the temperature-sensitive p53135val. It was found that in both cell types at 37.5°C, where overexpressed p53 exhibits mutant conformation and cytoplasmic localization, a considerable part of the protein was poly(ADP-ribosyl)ated. Using densitometric scanning, the molecular mass of the modified protein was estimated as 64 kD. Immunofluorescence studies with affinity purified anti-poly(ADP-ribose) transferase (pADPRT) antibodies revealed that, contrary to predictions, the active enzyme was located in the cytoplasm, while in nuclei chromatin was depleted of pADPRT. A distinct intracellular localization and action of pADPRT was found in the cell lines cultivated at 37.5°C, where p53 adopts wild-type form. Despite nuclear coexistence of both proteins no significant modification of p53 was found. Since the strikingly shared compartmentalization of p53 and pADPRT was indicative of possible complex formation between the two proteins, reciprocal immunoprecipitation and immunoblotting were performed with anti-p53 and anti-pADPRT antibodies. A poly(ADP-ribosyl)ated protein of 116 kD constantly precipitated at stringent conditions was identified as the automodified enzyme. It is concluded that mutant cytoplasmic p53 is tighly complexed to pADPRT and becomes modified. At 32.5°C binding to DNA of p53 or its temperature-dependent conformational alteration might prevent an analogous modification of the tumor suppressor protein. © 1996 Wiley-Liss, Inc.  相似文献   

13.
The p53-MDM2 feedback loop is vital for cell growth control and is subjected to multiple regulations in response to various stress signals. Here we report another regulator of this loop. Using an immunoaffinity method, we purified an MDM2-associated protein complex that contains the ribosomal protein L23. L23 interacted with MDM2, forming a complex independent of the 80S ribosome and polysome. The interaction of L23 with MDM2 was enhanced by treatment with actinomycin D but not by gamma-irradiation, leading to p53 activation. This activation was inhibited by small interfering RNA against L23. Ectopic expression of L23 reduced MDM2-mediated p53 ubiquitination and also induced p53 activity and G(1) arrest in p53-proficient U2OS cells but not in p53-deficient Saos-2 cells. These results reveal that L23 is another regulator of the p53-MDM2 feedback regulation.  相似文献   

14.
The tumor suppressor protein p53 is central to the cellular stress response and may be a predictive biomarker for cancer treatments. Upon stress, wildtype p53 accumulates in the nucleus where it enforces cellular responses, including cell cycle arrest and cell death. p53 is so dominant in its effects, that p53 enforcement – or – restoration therapy is being studied for anti-cancer therapy. Two mechanistically distinct small molecules that act via p53 are the selective inhibitor of nuclear export, selinexor, and MDM2 inhibitor, nutlin-3a. Here, individual cells are studied to define cell cycle response signatures, which captures the variability of responses and includes the impact of loss of p53 expression on cell fates. The individual responses are then used to build the population level response. Matched cell lines with and without p53 expression indicate that while loss-of-function results in altered cell cycle signatures to selinexor treatment, it does not diminish overall cell loss. On the contrary, response to single-agent nutlin-3a shows a strong p53-dependence. Upon treatment with both selinexor and nutlin-3a there are combination effects in at least some cell lines – even when p53 is absent. Collectively, the findings indicate that p53 does act downstream of selinexor and nutlin-3a, and that p53 expression is dispensable for selinexor to cause cell death, but nutlin-3a response is more p53-dependent. Thus, TP53 disruption and lack of expression may not predict poor cell response to selinexor, and selinexor’s mechanism of action potentially provides for strong efficacy regardless of p53 function.  相似文献   

15.
ATR (ataxia telangiectasia and Rad-3-related) is a protein kinase required for survival after DNA damage. A critical role for ATR has been hypothesized to be the regulation of p53 and other cell cycle checkpoints. ATR has been shown to phosphorylate p53 at Ser(15), and this damage-induced phosphorylation is diminished by expression of a catalytically inactive (ATR-kd) mutant. p53 function could not be examined directly in prior studies of ATR, however, because p53 was mutant or because cells expressed the SV40 large T antigen that blocks p53 function. To test the interactions of ATR and p53 directly we generated human U2OS cell lines inducible for either wild-type or kinase-dead ATR that also have an intact p53 pathway. Indeed, ATR-kd expression sensitized these cells to DNA damage and caused a transient decrease in damage-induced serine 15 phosphorylation of p53. However, we found that the effects of ATR-kd expression do not result in blocking the response of p53 to DNA damage. Specifically, prior ATR-kd expression had no effect on DNA damage-induced p53 protein up-regulation, p53-DNA binding, p21 mRNA up-regulation, or G(1) arrest. Instead of promoting survival via p53 regulation, we found that ATR protects cells by delaying the generation of mitotic phosphoproteins and inhibiting premature chromatin condensation after DNA damage or hydroxyurea. Although p53 inhibition (by E6 or MDM2 expression) had little effect on premature chromatin condensation, when combined with ATR-kd expression there was a marked loss of the replication checkpoint. We conclude that ATR and p53 can function independently but that loss of both leads to synergistic disruption of the replication checkpoint.  相似文献   

16.
17.
18.
19.
The possibility that the stimulation of hexose transport in human fibroblasts by phorbol myristate acetate (PMA), insulin, platelet-derived growth factor (PDGF) or epidermal growth factor (EGF) is associated with phosphorylation of the glucose transporter has been investigated. The time and concentration dependencies of the stimulation of transport by these agents under conditions identical to those used for phosphorylation were determined. Each agent, when used at the concentration that resulted in the maximal increase in transport rate, elicited this effect within 30 min of exposure. The extent of stimulation ranged from 15 to 70%. For determination of phosphorylation of the glucose transporter, fibroblasts were incubated for 16 h with [32P]Pi and exposed to the agonist for 30 min; the transporter was then isolated from a detergent lysate of the cells by immunoprecipitation with a monoclonal antibody. Under these conditions, there was no phosphorylation of transporter in basal cells and only PMA caused detectable incorporation of phosphate into the transporter. Thus, it is unlikely that the stimulation of glucose transport by insulin, PDGF and EGF involve transporter phosphorylation.  相似文献   

20.
DNA damage, stalled replication forks, errors in mRNA splicing and availability of nutrients activate specific phosphatidylinositiol-3-kinase-like kinases (PIKKs) that in turn phosphorylate downstream targets such as p53 on serine 15. While the PIKK proteins ATM and ATR respond to specific DNA lesions, SMG1 responds to errors in mRNA splicing and when cells are exposed to genotoxic stress. Yet, whether genotoxic stress activates SMG1 through specific types of DNA lesions or RNA damage remains poorly understood. Here, we demonstrate that siRNA oligonucleotides targeting the mRNA surveillance proteins SMG1, Upf1, Upf2 or the PIKK protein ATM attenuated p53 (ser15) phosphorylation in cells damaged by high oxygen (hyperoxia), a model of persistent oxidative stress that damages nucleotides. In contrast, loss of SMG1 or ATM, but not Upf1 or Upf2 reduced p53 (ser15) phosphorylation in response to DNA double strand breaks produced by expression of the endonuclease I-PpoI. To determine whether SMG1-dependent activation of p53 was in response to oxidative mRNA damage, mRNA encoding green fluorescence protein (GFP) transcribed in vitro was oxidized by Fenton chemistry and transfected into cells. Although oxidation of GFP mRNA resulted in dose-dependent fragmentation of the mRNA and reduced expression of GFP, it did not stimulate p53 or the p53-target gene p21. These findings establish SMG1 activates p53 in response to DNA double strand breaks independent of the RNA surveillance proteins Upf1 or Upf2; however, these proteins can stimulate p53 in response to oxidative stress but not necessarily oxidized RNA.Key words: DNA double strand breaks, nonsense-mediated mRNA decay (NMD), oxidative stress, phosphatidylinositiol-3-kinase-like kinases (PIKKs), RNA damage  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号