首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytoplasm, on ATP-dependent calcium transport in the plasma membrane vesicles of rat liver was investigated. (Ca2+-Mg2+)-ATPase activity in the liver plasma membranes was significantly increased by the presence of regucalcin (0.1-0.5 \sgmaelig;M) in the enzyme reaction mixture. This increase was completely inhibited by the presence of sulfhydryl group modifying reagent Nethylmaleimide (5.0 mM NEM) or digitonin (0.04%), which can solubilize the membranous lipids. When ATP-dependent calcium uptake by liver plasma membrane vesicles was measured by using 45CaCl2, the presence of regucalcin (0.1-0.5 \sgmaelig;M) in the reaction mixture caused a significant increase in the 45Ca2+ uptake. This increase was about 2-fold with 0.5 \sgmaelig;M regucalcin addition. An appreciable increase was seen by 5 min incubation with regucalcin addition. The regucalcin-enhanced ATP-dependent 45Ca2+ uptake by the plasma membrane vesicles was completely inhibited by the presence of NEM (5.0 mM) or digitonin (0.04%). These results demonstrate that regucalcin activates (Ca2+-Mg2+)-ATPase in the liver plasma membranes and that it can stimulate ATP-dependent calcium transport across the plasma membranes.  相似文献   

2.
ATP-dependent Ca2+ transport was studied in basolateral membrane vesicles prepared from rat parotid gland slices incubated without or with agents which increase cyclic AMP. Isoproterenol (10(-5) M), forskolin (2 X 10(-6) M) and 8-bromocyclic AMP (2 X 10(-3) M) all increased ATP-dependent 45Ca2+ uptake 1.5- to 3-fold. The effect of isoproterenol was concentration-dependent and blocked by the beta-adrenergic antagonist propranolol. Enhanced uptake did not appear an artifact of vesicle preparation as apparent vesicle sidedness, 45Ca2+ efflux rates, specific activity of marker enzymes and equilibrium Ca2+ content were identical in vesicle preparations from control and 8-bromocyclic AMP-treated slices. Kinetic studies showed the ATP-dependent Ca2+ transport system in vesicles from 8-bromocyclic AMP-treated slices displayed a approximately 50% increase in Vmax and in Km Ca2+, compared to controls. The data suggest that physiological secretory stimuli to rat parotid acinar cells, which involve cyclic AMP, result in a readjustment of the basolateral membrane ATP-dependent Ca2+ pump.  相似文献   

3.
Acute administration of ethanol (2.5 gm/kg, i.p.) to rats inhibits the cytosolic buffering of Ca2+ in nerve terminals. Ca2+ ATPase and ATP-dependent Ca2+ uptake are both inhibited 30 min after a single dose of ethanol. Chronic ethanol administration (6%, 14 days) did not inhibit Ca2+ ATPase but significantly stimulated ATP-dependent Ca2+ uptake. Lubrol WX treatment of acute ethanolic membranes reverses the inhibition of Ca2+ ATPase seen following ethanol. Lubrol WX treatment of chronic ethanolic membranes prevents the increase in ATP-dependent Ca2+ uptake seen in ethanolic membranes. Both acute and chronic ethanol-induced changes in Ca2+ transport within nerve terminals may involve lipid-dependent parameters of the membrane which may underlie neuronal adaptation.  相似文献   

4.
Plasma membranes of pig myometrium show the ability for endogenous phosphorylation (160 +/- 45 pmol 32P/mg.min); the initial rate of this process increases 2.5-fold in the presence of 10(-6) cAMP. Micromolar concentrations of cAMP activate the ATP-dependent transport of Ca2+ in myometrium plasma membranes; cAMP at concentrations of 10(-9)-10(-4) M has no effect on Ca,Mg-ATPase. Myometrium plasma membranes possess the Mg2+-dependent phosphatase activity. Dephosphorylation of membranes is accompanied by a decrease (by 25-50%) of the Ca,Mg-ATPase activity and Ca2+ uptake, respectively. The exogenous catalytic subunit of cAMP-dependent protein kinase increases the activity of Ca,Mg-ATPase in native and dephosphorylated membranes. Tolbutamide diminishes the activity of Ca,Mg-ATPase in native membranes by 25% without causing any appreciable influence on the enzyme activity in dephosphorylated membranes. Taking into account the similarity of dependence of Ca2+ uptake on Ca2+ concentration in native and cAMP-phosphorylated vesicles, it can be assumed that the cAMP-dependent phosphorylation affects the enzyme turnover number but not its affinity for Ca2+. The dephosphorylation-induced inhibition of Ca,Mg-ATPase activity and accumulation of Ca2+ are reversible processes.  相似文献   

5.
It has been demonstrated previously that dicarboxylic anions are cotransported during ATP-dependent Ca2+ transport by skeletal muscle sarcoplasmic reticulum (SR) membranes, and that anion cotransport stimulates Ca2+ transport. In the current study, we present evidence that dicarboxylic anion cotransport and Ca2+ transport are kinetically distinct in SR, but both functions are mediated by the CaATPase protein. Preincubation of SR with 40 microM fluorescein isothiocyanate (FITC) (pH 7.0) inhibited essentially all of the Ca2+ ATPase activity, as well as active oxalate-supported and oxalate-independent 45Ca2+ accumulation. The addition of 1 mM beta, gamma-methyleneadenosine 5'-triphosphate (AMP-PCP) to the preincubation media fully protected the dicarboxylic anion-independent Ca2+ ATPase activity and the oxalate-independent active 45Ca2+ accumulation from the inhibitory effects of FITC; however, the ATP-associated [14C]oxalate accumulation, the oxalate-dependent 45Ca2+ accumulation, and the oxalate- and maleate-dependent stimulation of Ca2+ ATPase activity were not protected by AMP-PCP. Thus, the dicarboxylic anion accumulation and the stimulation of Ca2+ uptake by dicarboxylic anions could be functionally separated from the ATP-dependent, anion-independent Ca2+ translocation. FITC bound exclusively to the 100-kDa (CaATPase) and 92-kDa (phosphorylase) proteins in the SR membranes and to purified CaATPase in sodium dodecyl sulfate-polyacrylamide gel electrophoresis; 1 mM AMP-PCP inhibited 50-55% of the FITC fluorescence on the 100-kDa protein, but did not significantly alter fluorescence on the 92-kDa protein. Two-dimensional gel analysis demonstrated a single 100-kDa protein in longitudinal SR membranes. FITC appears to inhibit ATP-dependent Ca2+ transport, and dicarboxylic anion translocation through interaction at separate domains of the CaATPase protein.  相似文献   

6.
An ATP-dependent calcium transport component from rat liver plasma membranes was solubilized by cholate and reconstituted into egg lecithin vesicles by a cholate dialysis procedure. The uptake of Ca2+ into the reconstituted vesicles was ATP-dependent and the trapped Ca2+ could be released by A23187. Nucleotides, including ADP, UTP, GTP, CTP, GDP, AMP, and adenyl-5'-yl beta, gamma-imidophosphate, and p-nitrophenylphosphate did not substitute for ATP. The concentration of ATP required for half-maximal stimulation of Ca2+ uptake into the reconstituted vesicles was 6.2 microM. Magnesium was required for calcium uptake. Inhibitors of mitochondrial calcium-sequestering activities, i.e. oligomycin, sodium azide, ruthenium red, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, and valinomycin did not affect the uptake of Ca2+ into the vesicles. In addition, strophanthidin and p-chloromercuribenzoate did not affect the transport. Calcium transport, however, was inhibited by vanadate in a concentration-dependent fashion with a K0.5 of 10 microM. A calcium-stimulated, vanadate-inhibitable phosphoprotein was demonstrated in the reconstituted vesicles with an apparent molecular weight of 118,000 +/- 1,300. These properties of Ca2+ transport by vesicles reconstituted from liver plasma membranes suggest that this ATP-dependent Ca2+ transport component is different from the high affinity (Ca2+-Mg2+)-ATPase found in the same membrane preparation (Lotersztajn, S., Hanoune, J. and Pecker, F. (1981) J. Biol. Chem. 256, 11209-11215; Lin, S.-H., and Fain, J.N. (1984) J. Biol. Chem. 259, 3016-3020). When the entire reconstituted vesicle population was treated with ATP and 45Ca in a buffer containing oxalate, the vesicles with Ca2+ transport activity could be separated from other vesicles by centrifugation in a density gradient and the ATP-dependent Ca2+ transport component was purified approximately 9-fold. This indicates that transport-specific fractionation may be used to isolate the ATP-dependent Ca2+ transport component from liver plasma membrane.  相似文献   

7.
The nucleoside 5'-triphosphate (NTP) substrate specificities for Ca-stimulated ATPase and ATP-dependent Ca2+ uptake activities have been examined in cardiac sarcolemma (SL) and sarcoplasmic (SR) membrane vesicles. The results indicate that SL membrane vesicles exhibit a much narrower range of NTP substrate specificities than SR membranes. In SR membrane vesicles, the Ca-stimulated Mg-dependent hydrolysis of ATP and dATP occurred at nearly equivalent rates, whereas the rates of hydrolysis of GTP, ITP, CTP, and UTP ranged from 16-33% of that for ATP. All of the above nucleotides also supported Ca2+ transport into SR vesicles; dATP was somewhat more effective than ATP while GTP, ITP, CTP, and UTP ranged from 28-30% of the activity for ATP. In the presence of oxalate, the initial rate of Ca accumulation with dATP was 4-fold higher than for ATP, whereas the activity for GTP, ITP, CTP, and UTP ranged from 35-45% of that for ATP. For the SL membranes, Ca-activated dATP hydrolysis occurred at 60% of the rate for ATP; GTP, ITP, CTP, and UTP were hydrolyzed by the SL preparations at only 7-9% of the rate for ATP. NTP-dependent Ca2+ uptake in SL membranes was supported only by ATP and dATP, with dATP 60% as effective as ATP. GTP, ITP, CTP, and UTP did not support the transport of Ca2+ by SL vesicles. The results indicate that the SL and SR membranes contain distinctly different ATP-dependent Ca2+ transport systems.  相似文献   

8.
The effect of regucalcin, a calcium-binding protein, on ATP-dependent Ca2+ transport in the basolateral membranes isolated from rat kidney cortex was investigated. The prepared membranes were in inside-out oriented and membrane vesicles. Ca2+-ATPase activity in the basolateral membranes was progressively elevated by increasing concentrations of regucalcin (10-8 to 10-6 M) in the reaction mixture. This increase was dependent on Ca2+ addition. The activatory effect of regucalcin on the enzyme is inhibited by the presence of digitonin (5 × 10-6%) which can solubilize the membranous lipids. Moreover, the regucalcin effect was clearly abolished by the presence of vanadate (0.1 mM) or N-ethylmaleimide (5.0 mM). However, the effect of calmodulin (6 × 10-7 M) to increase Ca2+-ATPase activity was not significantly inhibited by vanadate or N-ethylmaleimide, indicating that the action mode of regucalcin differs from that of calmodulin. Also, the activatory effect of regucalcin on Ca2+-ATPase was appreciably inhibited by addition of dibutyryl cAMP (10-5 and 10-3 M), while inositol 1,4,5-trisphosphate (10-7 and 10-5 M) had no effect. Dibutyryl cAMP itself did not have an effect on the enzyme activity. Furthermore, the 45Ca2+ uptake by the basolateral membranes was clearly increased by the presence of regucalcin (10-7 and 10-6 M). This increase was completely blocked by the presence of vanadate (0.1 mM), N-ethylmaleimide (5.0 mM) or dibutyryl cAMP (10-4 and 10-3 M) in the reaction mixture. These results clearly demonstrate that regucalcin, which is expressed in rat kidney cortex, can increase Ca2+-ATPase activity and Ca2+ uptake in the basolateral membranes. Regucalcin may play a cell physiologic role as an activator in the ATP-dependent Ca2+ pumps in the basolateral membranes from rat kidney cortex.  相似文献   

9.
Ca2+ sequestration and release from disks of rod outer segments may play a critical role in visual transduction. An ATP-dependent Ca2+ uptake activity has been identified in association with purified disks of bovine rod outer segments. A crude preparation of osmotically active disks was obtained from rod outer segments by hypoosmotic shock and subsequent flotation on a 5% Ficoll 400 solution. These "crude" disks were further purified by separation into two distinct components by centrifugation in a linear Ficoll gradient. Disks comprised the major component; at least 60% of the protein was rhodopsin. This fraction also contained a Ca2+ uptake activity stimulated approximately 4-fold by ATP. The initial rate was approximately 0.21 nmol of Ca2+ (mg of protein)-1 min-1. Most of the ATP-dependent accumulation of 45Ca2+ was released by the calcium ionophore A23187. The uptake activity was sensitive to vanadate (Ki approximately 20 microM) and insensitive to the mitochondrial Ca2+ uptake inhibitor ruthenium red (10 microM). The ATP-dependent Ca2+ uptake exhibited Michaelis-Menten activation kinetics with respect to [Ca2+] (Km approximately 6 microM). The osmotic properties of the sealed disk membranes were exploited to determine whether the association of Ca2+ transport activity with the disks was merely coincidental. The sedimentation properties of these disks, upon centrifugation on a second Ficoll linear density gradient, varied with the osmolarity of the gradient solution. In several separate gradient solutions of differing osmotic and ionic strengths, the Ca2+ uptake activity always comigrated with the disks. These results indicate that the ATP-dependent Ca2+ uptake activity was physically associated with sealed native disk membranes. The characteristics of the Ca2+ uptake activity suggest that it may play a major role in the regulation of cytosolic Ca2+ levels in rod cells in vivo.  相似文献   

10.
We have studied the mechanisms involved in calcium (Ca2+) transport through the basal plasma membranes (BPM) of the syncytiotrophoblast cells from full-term human placenta. These purified membranes were enriched 25-fold in Na+/K(+)-adenosine triphosphate (ATPase), 37-fold in [3H] dihydroalprenolol binding sites, and fivefold in alkaline phosphatase activity compared with the placenta homogenates. In the absence of ATP and Mg2+, a basal Ca2+ uptake was observed, which followed Michaelis-Menten kinetics, with a Km Ca2+ of 0.18 +/- 0.05 microM and Vmax of 0.93 +/- 0.11 nmol/mg/min. The addition of Mg2+ to the incubation medium significantly decreased this uptake in a concentration-dependent manner, with a maximal inhibition at 3 mM Mg2+ and above. The Lineweaver-Burk plots of Ca2+ uptake in the absence and in the presence of 1 mM Mg2+ suggest a noncompetitive type of inhibition. Preloading the BPM vesicles with 5 mM Mg2+ had no significant effect on Ca2+ uptake, eliminating the hypothesis of a Ca2+/Mg2+ exchange mechanism. This ATP-independent Ca2+ uptake was not sensitive to 10(-6) M nitrendipine nor to 10(-4) M verapamil. An ATP-dependent Ca2+ transport was also detected in these BPM, whose Km Ca2+ was 0.09 +/- 0.02 microM and Vmax 3.4 +/- 0.2 nmoles/mg/3 min. This Ca2+ transport requires Mg2+, the optimal concentration of Mg2+ being approximately 1 mM. Preincubation of the membrane with 10(-6) M calmodulin strongly enhanced the initial ATP-dependent Ca2+ uptake. Finally, no Na+/Ca2+ exchange process could be demonstrated.  相似文献   

11.
We have characterized ATP-dependent Ca2+ transport into highly purified plasma membrane fraction isolated from guinea pig ileum smooth muscle. The membrane fraction contained inside-out sealed vesicles and was enriched 30-40-fold in 5'-nucleotidase and phosphodiesterase I activity as compared to post nuclear supernatant. Plasma membrane vesicles showed high rate (76 nmol/mg/min) and high capacity for ATP dependent Ca2+ transport which was inhibited by addition of Ca2+ ionophore A23187. The inhibitors of mitochondrial Ca2+ transport, i.e., sodium azide, oligomycin and ruthenium red did not inhibit ATP-dependent Ca2+ uptake into plasma membrane vesicles. The energy dependent Ca2+ uptake into plasma membranes showed very high specificity for ATP as energy source and other nucleotide triphosphates were ineffective in supporting Ca2+ transport. Phosphate was significantly better as Ca2+ trapping anion to potentiate ATP-dependent Ca2+ uptake into plasma membrane fraction as compared to oxalate. Orthovanadate, an inhibitor of cell membrane (Ca2+-Mg2+)-ATPase activity, completely inhibited ATP-dependent Ca2+ transport and the Ki was approximately 0.6 microM. ATP-dependent Ca2+ transport and formation of alkali labile phosphorylated intermediate of (Ca2+-Mg2+)-ATPase increased with increasing concentrations of free Ca2+ in the incubation mixture and the Km value for Ca2+ was approximately 0.6-0.7 microM for both the reactions.  相似文献   

12.
ATP-dependent Ca2+ transport was investigated in a rat parotid microsomal-membrane preparation enriched in endoplasmic reticulum. Ca2+ uptake, in KCl medium, was rapid, linear with time up to 20 s, and unaffected by the mitochondrial inhibitors NaN3 and oligomycin. This Ca2+ uptake followed Michaelis-Menten kinetics, and was of high affinity (Km approximately 38 nM) and high capacity (approximately 30 nmol/min per mg of protein). In the presence of oxalate, Ca2+ uptake continued to increase for at least 5 min, reaching an intravesicular accumulation approx. 10 times higher than without oxalate. Ca2+ uptake was dependent on univalent cations in the order K+ = Na+ greater than trimethylammonium+ greater than mannitol and univalent anions in the order Cl- greater than acetate- greater than Br- = gluconate- = NO3- greater than SCN-. Ca2+ uptake was not elevated if membranes were incubated in the presence of a lipophilic anion (NO3-) and carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Ca2+ transport was altered by changes in the K+-diffusion potential of the membranes. A relatively negative K+-diffusion potential increased the initial rate of Ca2+ accumulation, whereas a relatively positive potential decreased Ca2+ accumulation. In the presence of an outwardly directed K+ gradient, nigericin had no effect on Ca2+ uptake. In aggregate, these studies suggest that the ATP-dependent Ca2+-transport mechanism present in rat parotid microsomal membranes exhibits an electrogenic Ca2+ flux which requires the movement of other ions for charge compensation.  相似文献   

13.
ATP-dependent Ca2+ uptake was measured in vesicles of rat liver cell basolateral plasma membranes. Nucleotide-dependent uptake was specific for ATP and observed at pH 7.0 and 7.4/7.5 but not at pH 8.0. ATP-dependent Ca2+ transport was only observed in the presence of Mg2+. Kinetic analysis of ATP-dependent transport revealed an apparent Km in the submicromolar region. Addition of calmodulin and trifluoperazine had no effect on ATP-dependent uptake. A Ca2+-dependent, phosphorylated intermediate with the apparent molecular weight of 135,000 could be demonstrated in the basolateral plasma membranes. Phosphorylated intermediates with apparent molecular weights of 200,000 and 110,000 were demonstrated in microsomes and appeared to contaminate 'basolateral' membrane protein phosphorylation. The results suggest that a 135,000 molecular weight protein is a Ca2+-ATPase and the enzymatic expression of the liver cell basolateral membrane Ca2+ pump.  相似文献   

14.
The effects of phorbol esters and diacylglycerols on Ca2+ transport in isolated human platelet membranes were determined. Phorbol 12-myristate 13-acetate (PMA) stimulated Ca2+-ATPase activity in crude and purified internal platelet membranes approximately 2-fold with half-maximal stimulation occurring at 10 nM. Dilauroylglycerol also stimulated Ca2+-ATPase activity half-maximally at a concentration of 7.5 microM, but dioctanoylglycerol was without effect at up to 30 microM. PMA also inhibited Ca2+ uptake when added before or after commencement of ATP-dependent transport. PMA (25 nM) doubled the rate of Ca2+ efflux from passively loaded membranes in the absence of ATP. No protein kinase C activity was detected in crude or purified membranes by histone phosphorylation or endogenous protein phosphorylation assays. These results suggest that PMA and dilauroylglycerol stimulate Ca2+-ATPase activity and inhibit ATP-dependent Ca2+ transport by increasing the permeability of the membranes to Ca2+.  相似文献   

15.
Ca2+ transport was investigated in basolateral plasma membranes (BLM) isolated from kidney cortex of the Milan strain of genetically hypertensive rats (MHS) and their normotensive controls (MNS) during a pre-hypertensive stage (age 3-4 weeks). It was found that the Vmax of ATP-dependent Ca2+ transport (in the presence of calmodulin) was about 16% lower in MHS than in control rats. In membranes from MNS rats which had been isolated in the presence of EGTA, the ATP-dependent Ca2+ transport showed a hyperbolic Ca2+ concentration dependence, a high Km (Ca2+) and a low Vmax; upon addition of exogenous calmodulin, the kinetics became sigmoidal, the Km (Ca2+) was decreased and the Vmax was increased. In membranes from MHS rats, the Ca2+ concentration dependence of ATP-driven Ca2+ transport was sigmoidal and the Ca2+ affinity was high in the absence of added calmodulin. Addition of exogenous calmodulin to these membranes resulted in an increase in Vmax, but no change in other kinetic parameters. Low-affinity hyperbolic kinetics of Ca2+ transport could only be obtained in MHS rats if the membranes were extracted with hypotonic EDTA and hypertonic KCl. These data suggest that the plasma membrane Ca2+-ATPase, which catalyses the ATP-dependent Ca2+ transport, exists in BLM of pre-hypertensive MHS rats predominantly in an activated, high-affinity form.  相似文献   

16.
Rat parotid gland homogenates were fractionated into mitochondrial, heavy microsomal and light microsomal fractions by differential centrifugation. ATP-dependent 45Ca2+ uptake by the subcellular fractions paralleled the distribution of NADPH-cytochrome c reductase, an enzyme associated with the endoplasmic reticulum. The highest rate of Ca2+ uptake was found in the heavy microsomal fraction. Ca2+ uptake by this fraction was dependent on the presence of ATP and was sustained at a linear rate by 5 mM-oxalate. Inhibitors of mitochondrial Ca2+ transport had no effect on the rate of Ca2+ uptake. Na+ and K+ stimulated Ca2+ uptake. At optimal concentrations. Na+ stimulated Ca2+ uptake by 120% and K+ stimulated Ca2+ uptake by 260%. Decreasing the pH from 7.4 to 6.8 had little effect on Ca2+ uptake. The Km for Ca2+ uptake was 3.7 microM free Ca2+ and 0.19 mM-ATP. Vanadate inhibited Ca2+ uptake; 60 microM-vanadate inhibited the rate of Ca2+ accumulation by 50%. It is concluded that the ATP-dependent Ca2+ transport system is located on the endoplasmic reticulum and may play a role in maintaining intracellular levels of free Ca2+ within a narrow range of concentration.  相似文献   

17.
The purified (Ca2+-Mg2+)-ATPase from rat liver plasma membranes (Lotersztajn, S., Hanoune, J., and Pecker, F. (1981) J. Biol. Chem. 256, 11209-11215) was incorporated into soybean phospholipid vesicles, together with its activator. In the presence of millimolar concentrations of Mg2+, the reconstituted proteoliposomes displayed a rapid, saturable, ATP-dependent Ca2+ uptake. Half-maximal Ca2+ uptake activity was observed at 13 +/- 3 nM free Ca2+, and the apparent Km for ATP was 16 +/- 6 microM. Ca2+ accumulated into proteoliposomes (2.8 +/- 0.2 nmol of Ca2+/mg of protein/90 s) was totally released upon addition of the Ca2+ ionophore A-23187. Ca2+ uptake into vesicles reconstituted with enzyme alone was stimulated 2-2.5-fold by the (Ca2+-Mg2+)-ATPase activator, added exogenously. The (Ca2+-Mg2+)-ATPase activity of the reconstituted vesicles, measured using the same assay conditions as for ATP-dependent Ca2+ uptake activity (e.g. in the presence of millimolar concentrations of Mg2+), was maximally activated by 20 nM free Ca2+, half-maximal activation occurring at 13 nM free Ca2+. The stoichiometry of Ca2+ transport versus ATP hydrolysis approximated 0.3. These results provide a direct demonstration that the high affinity (Ca2+-Mg2+)-ATPase identified in liver plasma membranes is responsible for Ca2+ transport.  相似文献   

18.
Two microsomal subfractions from isolated rat pancreatic acini were produced by centrifugation through a discontinuous sucrose density gradient and characterized by biochemical markers. The denser fraction ( SF2 ) was a highly purified preparation of rough endoplasmic reticulum; the less-dense fraction ( SF1 ) was heterogeneous and contained Golgi, endoplasmic reticulum and plasma membranes. 45Ca2+ accumulation in the presence of ATP and its rapid release after treatment with the bivalent-cation ionophore A23187 were demonstrated in both fractions. The pH optimum for active 45Ca2+ uptake was approx. 6.8 for the rough endoplasmic reticulum ( SF2 ) and approx. 7.5 for SF1 . Initial rate measurements were used to determine the affinity of the rough-endoplasmic-reticulum uptake system for free Ca2+. An apparent Km of 0.16 +/- 0.06 microM and Vmax. of 21.5 +/- 5.6 nmol of Ca2+/min per mg of protein were obtained. 45Ca2+ uptake by SF1 was less sensitive to Ca2+, half-maximal uptake occurring at 1-2 microM-free Ca2+. When fractions were prepared from isolated acini stimulated with 3 microM-carbamylcholine, 45Ca2+ uptake was increased in the rough endoplasmic reticulum. The increased uptake was due to a higher Vmax. with no significant change in Km. No effect was observed on 45Ca2+ uptake by SF1 . In conclusion, two distinct non-mitochondrial, ATP-dependent calcium-uptake systems have been demonstrated in rat pancreatic acini. One of these is located in the rough endoplasmic reticulum, but the precise location of the other has not been determined. We have shown that the Ca2+-transporting activity in the rough endoplasmic reticulum may have an important role in maintaining the cytosolic free Ca2+ concentration in resting acinar cells and is involved in Ca2+ movements which occur during stimulation of enzyme secretion.  相似文献   

19.
The effect of cytotoxic hyperthermia on Ca2+ transport by intracellular, nonmitochondrial Ca2+ stores of the human colon cancer cell line, HT-29, was studied using cells permeabilized with saponin. Saponin treatment permitted equilibration of the cytosol with a defined extracellular medium consisting of an intracellular-like ionic composition, ATP and an ATP-regenerating system, and Ca2+/EGTA buffers to adjust the free [Ca2+]. Under the conditions employed, ATP-dependent Ca2+ uptake in saponin-permeabilized cells was demonstrated to be exclusively due to nonmitochondrial Ca2+ stores, e.g., endoplasmic reticulum or calciosomes. Heat treatment for 120 min at 44.5 degrees C sufficient to kill 80% of the cells inhibited ATP-dependent Ca2+ uptake by 50% in terms of rate and total Ca2+ accumulated. With cells made thermotolerant by either arsenite or heat treatment 24 h prior to challenge heating, ATP-dependent Ca2+ uptake was resistant to a second equivalent heat dose. Efflux of Ca2+ from saponin-permeabilized cells when measured at 37 degrees C was unaffected by a prior heat treatment (44.5 degrees C for 120 min).  相似文献   

20.
A rat liver plasma membrane fraction showed an ATP-dependent uptake of Ca2+ which was released by the ionophore A23187. This activity represents a plasma membrane component and is not due to microsomal contamination. The Ca2+ transport displayed several properties which were different from those of the high-affinity Ca2+-ATPase previously observed in these membranes (Lotersztajn et al. (1981) J. Biol. Chem. 256, 11209-11215; Birch-Machin, M.A. and Dawson, A.P. (1986) Biochim. Biophys. Acta 855, 277-285). These observations have shown that Ca2+-ATPase does not require added Mg2+ whereas we have demonstrated that, in the same membrane preparation, Ca2+ uptake required millimolar concentrations of added Mg2+. The Ca2+-ATPase has a broad specificity for the nucleotides ATP, GTP, UTP and ITP while Ca2+ uptake remains specific for ATP. Ca2+ uptake also displayed different affinities for free Ca2+ and MgATP compared to Ca2+-ATPase activity, with apparent Km values of 0.25 microM Ca2+, 0.15 mM MgATP and 1.0 microM Ca2+, 4 microM MgATP respectively. The apparent maximum rate of Ca2+ uptake was about 150-fold less than Ca2+-ATPase activity. These features suggest that the high-affinity Ca2+-ATPase is not the enzymic expression of the ATP-dependent Ca2+ transport mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号