首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
DNA synthesis in regenerating liver was studied to determine whether the onset of stimulated DNA synthesis preceded the onset of increased incorporation of thymidine into DNA. Thymidine incorporation into hepatic DNA was not stimulated 15 h after operation, but was stimulated after 18 h; peak stimulation occurred 30 h after operation. Thymidine kinase activity was stimulated 24 h after operation; highest kinase activity was observed at 36 h. The onset of stimulated DNA synthesis was estimated by following the incorporation of labeled aspartic acid, sodium formate, adenine or orotic acid into appropriate DNA bases, viz., thymine, adenine, adenine or cytosine, respectively. Incorporation of adenine and orotic acid was stimulated between 15 h and 18 h after operation; incorporation of aspartic acid and sodium formate was stimulated between 18 h and 21 h after operation.The incorporation of thymidine into DNA was accelerated by stress stimulus and was inhibited by hydrocortisone. Changes in thymidine kinase activity also were correspondingly accelerated or delayed. Incorporation of labeled thymidine, adenine, formate, orotic acid or thymine into appropriate DNA bases, viz., thymine, adenine, adenine, cytosine or thymine, respectively, was stimulated by stress stimulus or was inhibited by hydrocortisone.It was concluded from these data that stimulation of DNA synthesis and of thymidine incorporation into DNA was essentially synchronized in regenerating rat liver. Results from this study were compared with results from similar studies in 2 other tissues, and the limitations, attendant with using thymidine incorporation into DNA as an indicator of stimulated DNA synthesis, were discussed.  相似文献   

2.
Phorbol 12-myristate-13-acetate (PMA) inhibited an increase in [3H]thymidine incorporation induced by phytohemagglutinin (PHA) in cultured bovine lymphocytes. Cellular levels of putrescine increased in the presence of PHA and PMA but the levels of spermidine and spermine had decreased to the control levels by 40 h. In cells treated with PHA and PMA, the activity of spermidine/spermine N1-acetyltransferase, a rate-limiting enzyme in polyamine biodegradation, was stimulated synergistically. Phorbol esters with tumor-promoting ability also stimulated the enzyme activity and a reciprocal correlation between the enzyme activity and DNA synthesis was observed. Addition of spermine reversed the PHA- and PMA-induced inhibition of DNA synthesis but putrescine and spermidine failed to restore it. These results suggest that the enhancement of spermidine/spermine N1-acetyltransferase activity results in the depletion of intracellular spermine and a concomitant decrease in DNA synthesis.  相似文献   

3.
Summary The effect of arabinosyl cytosine (ara-C) was studied on the uptake, phosphorylation and incorporation of 3H-thymidine in human tonsillar lymphocyte cultures is described along with its effect on the level of DNA polymerase and thymidine kinase activities induced by phytohaemagglutinin (PHA). Freshly isolated tonsillar lymphocytes are stimulated cells with a remarkably high activity of DNA polymerase a and thymidine kinase. During in vitro culture, these stimulated cells are transformed to the resting state with low DNA polymerase and thymidine kinase activity. However, a new DNA synthesising cycle can be induced by PHA with maximum at 48 h.10–6 M ara-C inhibited the incorporation of 3H-thymidine by 90–95%. This inhibition may be reversed by rinsing the cells. The inhibition of the transport of 3H-thymidine seems to be only a consequence of the inhibitory effect of ara-C on the DNA polymerisation reaction, because at 10 °C, where DNA synthesis was arrested, ara-C does not influence the uptake and the phosphorylation of 3H-thymidine.Ara-C (10–6 M) abolished also the PHA induced elevation of DNA polymerase a and thymidine kinase activities without influencing protein synthesis of the cell. This supports a coordinated regulation mechanism between DNA synthesis and the synthesis of enzymes involved in DNA replication.  相似文献   

4.
Adipose conversion of 3T3-L1 cells by inducers (dexamethasone, 1-methyl-3-isobutylxanthine and insulin) was inhibited by LiCl at concentrations from 2 to 20 mM. The effect of LiCl was reversible and the inhibited cells were converted to adipocytes when stimulated after the removal of LiCl. Inhibition by LiCl of adipose conversion was accompanied with a blockage of the enhanced [3H]thymidine incorporation and cellular proliferation that occurred before the adipocyte phenotype was expressed. Of the cations tested, only Li+ had these effects.  相似文献   

5.
Aspirin (acetylsalicylic acid, ASA) is effective in the primary and secondary prevention of vascular events. This effect is mediated in large part by platelet inhibition; however, non-platelet-mediated effects may also be relevant in the overall efficacy of ASA. We determined the effect of ASA on the synthesis of DNA and total proteins in cultured human coronary endothelial cells (HCAECs). Fourth generation HCAECs were cultured and treated with ASA and rate of synthesis of DNA and total proteins was determined by incorporation of [3H]thymidine and [3H]proline, respectively. ASA inhibited DNA synthesis by 50% at a concentration of 1mM and protein synthesis by 50% at a concentration of 2mM. The inhibitory effect of ASA was observed as early as 2h after treatment of HCAECs. The inhibition of DNA and protein synthesis could be reversed within 24h after removal of the drug from the culture medium. Indomethacin also inhibited DNA and protein synthesis. Western blot analysis revealed that the expression of p53 protein was increased after treatment of the cells with ASA. These observations indicate that ASA decreases endothelial cell proliferation through cell cycle arrest mediated by enhanced p53 expression. Arrest of endothelial proliferation and activation may be an important mechanism of the beneficial effect of ASA in acute coronary syndromes.  相似文献   

6.
Mevinolin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, stimulates neurite outgrowth and acetylcholinesterase (ACE) activity in C1300 (Neuro-2A) murine neuroblastoma cells. Sprouting of neurites began within 4-8 h, before changes in cell proliferation could be detected by [3H]thymidine incorporation or flow cytometry. In contrast, the increase in ACE activity was temporally correlated with suppression of DNA synthesis, which occurred after 8 h. The activity of the membrane marker enzyme phosphodiesterase I was not stimulated by mevinolin. Suppression of protein synthesis with cycloheximide blocked the induction of ACE activity but only partially inhibited neurite outgrowth in the mevinolin-treated cultures. When mevinolin was removed from the culture medium, most of the cells retracted their neurites within 2 h, but ACE activity did not decline until DNA synthesis began to return to control levels after 10 h. Similarly, retraction of neurites in differentiated cells exposed to colchicine was not accompanied by a decrease in ACE activity. DNA histograms suggested that mevinolin arrests neuroblastoma cells in both the G1 and G2/M compartments of the cell cycle. Other cytostatic drugs that arrest cells at different stages of the cell cycle did not cause Neuro-2A cells to form neurites such as those seen in the mevinolin-treated cultures. When incorporation of [3H]acetate into isoprenoid compounds was studied in cultures containing mevinolin in concentrations ranging from 0.25 microM to 25 microM, the labeling of cholesterol, dolichol, and ubiquinone was suppressed by 90% or more at all concentrations. However, significant growth arrest and cell differentiation were observed only at the highest concentrations of mevinolin. Supplementing the medium with 100 microM mevalonate prevented the cellular response to mevinolin, but additions of cholesterol, dolichol, ubiquinone, or isopentenyl adenine were generally ineffective. The cholesterol content of neuroblastoma cells incubated with 25 microM mevinolin for 24 h was not diminished, and protein glycosylation, measured by [3H]mannose incorporation, was decreased only after 24 h at high mevinolin concentration. These studies suggest that the stimulation of neurite outgrowth and the increase in ACE activity induced by mevinolin are independent phenomena. Whereas neurite outgrowth is not related directly to the effects of mevinolin on cell cycling, the induction of ACE is correlated with the inhibition of cell proliferation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Retinoids are potent inhibitors of growth and tumor progression in many mammary carcinoma cell lines, though regulation of growth in nontumorigenic mammary epithelial cells by retinoids is less clear. Here, we have characterized the inhibition of MAC-T (a nontransformed bovine mammary epithelial cell line) cellular proliferation by retinoids and their role in regulating insulin-like growth factor binding proteins (IGFBPs). Retinoic acid (RA) (100 nM) was a potent inhibitor of MAC-T cell proliferation. Retinol was 10–100 times less effective. Neither retinoid could completely arrest growth at noncytotoxic concentrations. Retinoic acid inhibited cellular proliferation by 1 h (P < .05), but inhibition was fivefold greater by 24 h (P < .01). This second stage of growth inhibition (after 12 h) was dependent upon protein synthesis. However, RA-induced inhibition of cellular proliferation did not persist, with thymidine incorporation increasing toward control levels by 4 days in culture. Retinoic acid was less effective in inhibiting thymidine incorporation when cells were stimulated with insulin, des(1–3) IGF-I, or Long(R3) IGF-I when compared to cells stimulated with native IGF-I or serum. Inhibition of proliferation by RA was associated with increased levels of IGFBP-2 in conditioned media and in plasma membrane preparations. Treatment with insulin or des(1–3) IGF-I resulted in the appearance of IGFBP-3 in conditioned media and on the cell surface. However, RA significantly reduced IGFBP-3 levels in conditioned media and eliminated IGFBP-3 associated with the plasma membrane. Thus, RA is a potent but transient inhibitor of bovine mammary epithelial cell proliferation, and this growth inhibition is correlated with increased IGFBP-2 accumulation and inhibition of IGF-I stimulated IGFBP-3 protein secretion. © 1996 Wiley-Liss, Inc.  相似文献   

8.
The role of cell surface galactosyltransferase in mediating isoproterenol-induced parotid gland hypertrophy and hyperplasia was examined in rat parotid gland acinar cells. Introduction of the transferase modifier, alpha-lactalbumin, or galactosyltransferase-associated kinase inhibitor trifluoperazine, into beta-agonist-treated rats prevented acinar cell proliferation as determined by [3H]thymidine incorporation after 96 h of treatment. However, [3H]thymidine incorporation into DNA after 24 h of treatment, with injection of a combination of isoproterenol/alpha-lactalbumin or isoproterenol/trifluoperazine, was similar to injections of isoproterenol alone; suggesting that acinar cells could be stimulated to undergo a single round of DNA synthesis. Northern blot analysis of myc and fos expression followed a similar pattern of down-regulation to control levels after 96 h but not after 24 h. Hybridization with erb B showed little change with proliferation, confirming previous observations on protein levels of the EGF-receptor in acinar cells. Western blot analysis of nuclear protein expression of myc revealed that isoproterenol caused an increase in a 62-kDa protein which was again down-regulated with inhibition of cell proliferation. Analysis of protein levels of Rb110 protein showed no change in protein level in the nucleus with cell proliferation, but did show an associated increase in protein phosphorylation in response to growth stimulation.  相似文献   

9.
Peripheral blood lymphocytes from rats carrying a transplantable hepatoma were cultured in the presence of phytohemagglutinin (PHA), concanavalin A (ConA) or dextran sulfate (DS) at various times after tumor cell inoculation or after its surgical removal. Mitogen-induced lymphocyte transformation, measured by tritiated thymidine incorporation, declined as the tumor size increased, especially when cells were cultured in autologous serum. The response to PHA and ConA declined prior to the response to DS. This inhibition could not be removed by extensive washing of the cells, alteration of serum concentration, time of incubation or mitogen dose. Culture for 24 hr prior to the addition of high doses of mitogen resulted in partial restoration of the PHA and ConA, but not DS, responses. Previously inhibited responses also returned when the tumor was surgically removed. Spleen cells from animals with large tumors were also inhibited.  相似文献   

10.
Prolactin (PRL)-stimulated ornithine decarboxylase (ODC) activity and subsequent proliferation are inhibited by the cyclopeptides cyclosporine (CsA) and didemnin B (DB) in Nb 2 node lymphoma cells. Similar concentrations of these agents also inhibit 125I-PRL binding, suggesting that their inhibitory effects on these PRL-dependent physiologic responses are mediated at least in part at the level of PRL receptor interactions. The phorbol ester TPA stimulated ODC activity and [3H]thymidine incorporation to 54% and 31% that of a near-optimal mitogenic concentration of PRL (10 ng/ml), suggesting that mitogenesis in these cells is coupled to some degree to the activation of protein kinase C (PKC). The calcium ionophore A23187 increased ODC activity only slightly and actually decreased [3H]thymidine incorporation to a value below the "cells only" controls. The addition of TPA plus A23187 did not further enhance the effects of TPA to elevate ODC activity and [3H]thymidine incorporation. However, A23187 significantly elevated PRL-stimulated ODC activity with a subsequent inhibition of [3H]thymidine incorporation, suggesting a block of entry into S phase. Both cyclopeptides decreased the elevation of ODC activity in G1 phase of cell cycle in response to PRL, suggestive of a site of action for these agents in early G1, a conclusion compatible with their ability to inhibit PRL binding to these cells. Addition of CsA or DB 2 hr after PRL had no effect on PRL-stimulated ODC activity detectable at 6 hr, but addition of either as late as 6 hr still affected the extent of mitogenesis. This is in line with the requirement for PRL to be present in the culture medium for a minimum of 3 to 6 hr to invoke a maximal effect on mitogenesis. Addition of either cyclopeptide after the cells were in S phase had no effect on the extent of [3H]thymidine incorporation. An inhibitor of the cyclooxygenase pathway (indomethacin) enhanced both PRL-stimulated ODC activity and proliferation, whereas inhibition of the lipoxygenase pathway by NDGA attenuated only proliferation, suggesting that in Nb 2 cells, products of the lipoxygenase pathway may contribute to the mechanism of PRL-stimulated mitogenesis. Because Nb 2 lymphoma cells were derived from estrogenized rats, estrogen was tested as a mitogen. By itself it was not mitogenic, but in conjunction with PRL, estradiol-17 beta elevated the ODC response and inhibited proliferation. Inhibitors of PKC known to have minimal effects on RNA synthesis, quercetin and gossypol, totally inhibited both the elevations of ODC activity and [3H]thymidine incorporation in response to PRL in Nb 2 lymphoma cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The success of somatic cell nuclear transfer depends critically on the cell cycle stage of the donor nucleus and the recipient cytoplast. Karyoplasts in the G0 or G1 stages are considered to be the most suitable for nuclear transfer. In the present study, we used a reversible cell cycle inhibitor, mimosine, to synchronize porcine granulosa cells (GCs) in G1 phase of the cell cycle. Porcine GCs were obtained from 3 to 5mm ovarian follicles of slaughtered gilts. The effect of mimosine on the proliferation, DNA synthesis and cell cycle stage of cultured cells was examined by incorporation of radiochemical 3H-thymidine, immunocytochemical detection of incorporated thymidine analogue 5-bromo-2-deoxyuridine (BrdU) and flow cytometry analyses. Mimosine treatment of pig GCs for 24h resulted in proliferation arrest in vitro. Treatment with 0.5mM mimosine significantly (P<0.05) inhibited 3H-thymidine incorporation after 24h of culture (4.6% +/- 0.1) and after 24h of culture in serum deprived medium (41.3% +/- 3.8), in comparison to controls (100%). Inhibition of DNA synthesis was further confirmed by immunocytochemical and flow cytometry analyses. Compared with controls (78.2%), mimosine treatment for 24h increased the proportion of G0/G1 cells in the culture (85.7%) more effectively than serum starvation (SS; 81.2%). Mimosine-caused G1 arrest of porcine GCs was fully reversible and cells continued to proliferate after removing the drug, especially when they were stimulated by EGF.  相似文献   

12.
The effects of the newly isolated bovine milk growth factor (MGF) which shows N-terminal homology to transforming growth factor beta 2 were compared with the effects of porcine transforming growth factor beta 1 and beta 2 (pTGF-beta 1 and -beta 2) on human T lymphocyte activation. Freshly isolated human PBMC were stimulated with either PHA, anti-CD3 + phorbol-12,13-dibutyrate (PDBu), or with a combination of ionomycin + PDBu. MGF, pTGF-beta 1, and pTGF-beta 2 decreased mitogen-induced [3H]thymidine incorporation by 30 to 75% in a dose-dependent manner. The maximum degree of inhibition was obtained at 1 ng/ml (40 pM) and could not be increased by increasing the concentration of teh transforming growth factor 10-fold. Stimulation of fresh T cells with the recall Ag tetanus toxoid was also inhibited (85%) by MGF at pM concentrations as was the proliferation of a human T cell clone specific for purified protein derivative. The effects of MGF and pTGF-beta 1 on anti-CD3-mediated increase of intracellular Ca2+ (Cai2+) was investigated by using the Fura-2 method. Neither MGF nor pTGF-beta 1 inhibited this increase in Cai2+ induced by a mitogenic concentration of anti-CD3 antibody. In order to determine whether TGF-beta preferentially inhibited the CD4+ or CD8+ subpopulation of human T cells, a limiting dilution analysis system, which allows every T cell to proliferate, was used. pTGF-beta 1 at a concentration of 5 ng/ml decreased the frequency of proliferating T cell precursors of both the CD4+ and CD8+ subsets to a similar extent. Furthermore, MGF, pTGF-beta 1, and pTGF-beta 2 also decreased IL-2 mediated [3H]thymidine incorporation into human PBL Con A blasts and the IL-4-mediated [3H]thymidine incorporation of purified T lymphocytes costimulated with PDBu by 70%. In conclusion, bovine MGF exerts suppressive effects on human T cells stimulated with Ag, mitogens, or interleukins, and the degree of T cell suppression is similar (or identical) to those of pTGF-beta 1 or -beta 2.  相似文献   

13.
The level of intracellular glutathione (GSH) in mitogen-stimulated mouse lymphocytes is increased in the presence of 2-mercaptoethanol (2-ME), an enhancer of lymphocyte activation and proliferation. Since proliferation of lymphocytes in response to mitogens involves direct activation by a mitogen followed by continued proliferation in response to interleukin-2 (IL-2), we have investigated the effect of 2-ME and exogenous IL-2 on the GSH content and cell proliferation of rat lymphocytes stimulated with phytohemagglutinin (PHA). PHA stimulation increased both GSH content and the magnitude of the proliferative response, as measured by thymidine incorporation into cellular DNA. However, incubation of stimulated lymphocytes with 2-ME or IL-2 for 72 hr produced a significant further elevation of GSH levels and thymidine incorporation. 2-ME also increased the GSH content in unstimulated cultures, but it had little effect on thymidine incorporation. IL-2 increased GSH content and decreased thymidine incorporation in unstimulated lymphocytes. Exposure of cells to DL-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of GSH biosynthesis, significantly depleted GSH and lowered the proliferative response, suggesting a crucial role of de novo GSH synthesis for lymphocyte activation. The data suggest that both 2-ME and IL-2 promote lymphocyte proliferation, although the mechanisms by which intracellular GSH levels are increased by the agents are apparently different.Copies of articles are available through ISI Document Delivery Services c/o The Genuine Article, 3501 Market Street, Philadelphia, PA 19104.  相似文献   

14.
Concentrations of purine and pyrimidine ribonucleotides were measured with HPLC in lymphocytes of man, horse, pig and sheep and in rat thymocytes. The ATP concentration was highest in lymphocytes of all species and about 850 pmol/10(6) cells in human and equine lymphocytes, higher in porcine and lower in ovine lymphocytes and rat thymocytes. The GTP concentration was comparable in human, equine and porcine lymphocytes, but lower in ovine lymphocytes. ATP concentration was also measured in lymphocytes of man, horse and pig with a luciferin-luciferase assay. During culturing with or without phytohemagglutinin the ATP concentrations decreased in these lymphocytes. The concentrations of TTP and dATP were measured with a DNA polymerase assay. Phytohemagglutinin-stimulation increased the TTP concentration in lymphocytes of all three species, the dATP concentration only in human lymphocytes. ATP, TTP and dATP concentrations and thymidine incorporation were measured in phytohemagglutinin-stimulated lymphocytes after 24 and 48 h culturing in the presence of adenosine or deoxyadenosine. Adenosine increased the ATP concentration in porcine and equine, but not in human lymphocytes. Deoxyadenosine and adenosine did not affect the TTP concentration. Deoxyadenosine decreased the ATP concentration only in the presence of EHNA in human lymphocytes, but increased it in other conditions and in equine and porcine lymphocytes. Deoxyadenosine in the presence of EHNA increased the dATP concentration in human, equine and porcine lymphocytes 3-, 10-, and 9-fold, respectively, and decreased considerably thymidine incorporation. Deoxyadenosine without EHNA increased the dATP concentration 2-5-fold, decreased the thymidine incorporation in lymphocytes of man and horse, but stimulated incorporation in porcine lymphocytes about 5-fold. The latter results indicate that accumulation of dATP is not always associated with inhibition of cell proliferation.  相似文献   

15.
Monoclonal antibody 9.6 is specific for a 50 kd T cell surface protein (p50) associated with the sheep erythrocyte (E)-receptor on human T lymphocytes. This antibody interferes with many T cell functions. We have examined the effect of antibody 9.6 on lymphocyte proliferation and interleukin 2 (IL 2) production triggered by mitogens, soluble antigens, and alloantigens to elucidate the mechanism(s) of its immunosuppressive action. At concentrations as low as 50 ng/ml, 9.6 suppressed lymphocyte proliferation and the elaboration of IL 2 by T cells stimulated by PHA, alloantigens, or low concentrations of the phorbol ester TPA (less than or equal to ng/ml). Furthermore, in cultures stimulated by a combination of PHA plus TPA, 9.6 did not inhibit the acquisition of IL 2 receptors but inhibited proliferation and IL 2 production. Immunoaffinity-purified IL 2 completely restored lymphocyte proliferation in cultures inhibited by 9.6. Studies of kinetics of inhibition by 9.6 showed that this antibody inhibited lymphocyte proliferation induced by PHA, alloantigen, and PPD even when added at 24, 48, and 72 hr, respectively, after the initiation of these cultures, suggesting that 9.6 does not block lectin binding or antigen recognition by T cells and that it can inhibit lymphocyte proliferation even after cells have undergone one or more rounds of cell division. A dose-response analysis of lymphocyte proliferation induced by PHA or by TPA demonstrated that the degree of inhibition by 9.6 decreased with increasing concentrations of these mitogens. Antibody 9.6 did not inhibit lymphocyte response induced by optimal concentrations of PHA (50 to 100 micrograms/ml; PHA-M) but inhibited proliferation of maximally induced lymphocytes by using a synergistic combination of low concentrations of PHA (5 micrograms/ml, PHA-M) plus TPA (1 ng/ml). Taken together, these findings indicate that 1) 9.6 inhibits lymphocyte proliferation by affecting IL 2 production, 2) 9.6 does not inhibit the acquisition of 9.6 receptors induced by a synergistic combination of PHA plus TPA, and 3) p50 molecules may be involved in multiple pathways of T cell activation.  相似文献   

16.
Inhibition of the proliferation of Daudi cells by exposure to human lymphoblastoid interferons is associated with an early and marked decrease in the incorporation into DNA of exogenous [3H]thymidine when cells are incubated with trace amounts of this precursor. In contrast, incorporation of exogenous deoxyadenosine into DNA is unchanged under the same conditions. Interferon treatment results in a lowering of thymidine kinase activity, an effect which may be largely responsible for the inhibition of incorporation of labelled thymidine into DNA. At higher concentrations of exogenous thymidine, which minimize the contribution of intracellular sources to the dTTP pool, the inhibition of thymidine incorporation is abolished. Under conditions in which exogenous thymidine is rigorously excluded from the medium or, conversely, in which cells are entirely dependent on exogenous thymidine for growth, the magnitude of the inhibition of cell proliferation by interferons is the same as under normal culture conditions. We conclude that, even though cell growth is impaired, the rate of DNA synthesis is not grossly inhibited up to 48 h after commencement of interferon treatment. Furthermore, changes in neither the utilization of exogenous thymidine nor the synthesis of nucleotides de novo are responsible for the effect on cell proliferation.  相似文献   

17.
The inhibitory effect of BV-araU on DNA synthesis in human embryonic lung cells infected with varicella-zoster virus (VZV) or herpes simplex virus type 1 (HSV-1) was compared with that of acyclovir. Cellular uptake of [3H]thymidine and its incorporation into DNA was markedly stimulated by the infection with VZV or HSV-1, suggesting that the incorporation was mainly due to viral DNA synthesis. DNA synthesis in VZV-infected cells was dose-dependently suppressed by BV-araU and acyclovir, although cellular uptake of [3H]thymidine decreased in cells treated with a high concentration of drugs for an extended time. DNA synthesis in HSV-1-infected cells was also markedly inhibited by both drugs in a dose-dependent manner, without affecting cellular uptake of [3H]thymidine. The concentration of drugs inhibiting DNA synthesis was well correlated to their in vitro anti-VZV and anti-HSV-1 activities. The inhibitory concentration of BV-araU for DNA synthesis in VZV-infected cells was one-thousandth of that of acyclovir. Our results suggest that the antiviral action of BV-araU against VZV and HSV-1 is based on the inhibition of DNA synthesis in herpesvirus-infected cells.  相似文献   

18.
Retinoic acid (RA) is well known to be a potent teratogen and induces a variety of facial defects in vivo, but at concentration levels lower than those that cause facial defects, RA seems to play an important role in normal facial development. In a previous study, we demonstrated the ability of RA to stimulate chondrogenesis in vitro in HH stage 23/24 chick mandibular (MND) but not frontonasal (FNP) mesenchyme cultured in a serum-free medium. The present study furthers these results by examining the effects of RA on chondrogenesis of chick facial mesenchyme at earlier embryonic stages and the effects on cell proliferation and synthesis of specific extracellular matrix macromolecules at stage 23/24. MND and FNP cells were cultured as micromasses for 4 days in defined media. As described previously, chondrogenesis in stage 23/24 MND cells was significantly enhanced by concentrations of RA of 0.1-1 ng/ml; however, at all earlier stages examined (18 to 22) RA at these concentrations had no significant effect. Higher concentrations of the retinoid inhibited chondrogenesis in MND cultures from all stages tested. Cells of the FNP from all stages displayed no significant change in chondrogenesis below 1 ng/ml RA and a dose dependent inhibition at higher concentrations. Thus RA's promotional effects in the face are not only tissue specific (MND), but also stage-dependent (HH 23/24). The specific effects of RA on matrix production and cell proliferation of stage 23/24 MND and FNP cells was examined by analysis of 35S sulfate, 3H thymidine and 3H proline incorporation. Analysis of 35S sulfate incorporation into sulfated proteoglycans confirmed that concentrations of RA of 0.1-1 ng/ml stimulated cartilage matrix production in MND but not FNP cultures. Above this level of RA, 35S sulfate incorporation was reduced in both. Likewise, 3H proline incorporation into collagenous protein, and to a lesser extent non-collagenous proteins, was stimulated by low levels of RA in MND, but not FNP cultures. Higher concentrations of the retinoid in either MND or FNP cultures did not lower collagen production, undoubtedly due to stimulation of non-chondrogenic cells within the population. This indicates that levels of RA as high as 100 ng/ml cause phenotypic change rather than cell death. This last point is corroborated by the analysis of 3H thymidine uptake in the cultures which was only transiently modified in most. The data indicate that cell proliferation occurred even in the presence of high RA levels.  相似文献   

19.
We have examined the effects of Sertoli cell-secreted proteins (SCSP) on [3H]thymidine incorporation by purified preparations (greater than 96%) of rat Leydig cells to determine whether Sertoli cells influence DNA synthesis in these cells in vitro. Incubation of Leydig cells isolated from testes of rats of ages 16 to 90 days with SCSP (Mr greater than 10,000) induced significant dose-, time- and age-related increases in [3H]thymidine incorporation by the cells. A dose-response curve to SCSP showed that as little as 0.2 micrograms SCSP/ml consistently induced a small but significant increase (31% and 10% above control; P less than 0.001) in [3H]thymidine incorporation by Leydig cells isolated from immature (26 days) and mature (70 days) rats, respectively. The maximum response (230% and 48% above control) was obtained with a concentration of 18 micrograms SCSP/ml in cells isolated from immature and mature rats, respectively. Hydroxyurea, a specific inhibitor of replicative DNA synthesis, significantly (P less than 0.001) inhibited both basal and SCSP-induced [3H]thymidine incorporation in Leydig cells from immature and adult rats without affecting the viability of the cells. Incubation of immature rat Leydig cells in SCSP for 48 h also stimulated a 3-fold increase in cell number. The component of the crude SCSP which stimulated Leydig cell [3H]thymidine incorporation is trypsin-sensitive, heat-stable, and adsorbs to a heparin-agarose affinity column but not to concanavalin A-Sepharose. The secretion of this factor(s) by Sertoli cells is stimulated independently by FSH and testosterone. These results demonstrate for the first time that cultured Sertoli cells secrete a protein(s) which, in vitro, stimulates rat Leydig cell replicative DNA synthesis.  相似文献   

20.
Mouse mammary epithelial cells were plated onto 24-well culture plates (50,000 per well), allowed to attach and serum starved for 24 h. Following serum starvation, DNA synthesis was induced by the addition of 10% fetal calf serum and determined by a 1-h pulse with [3H]thymidine from 17 to 18 h after serum addition. Addition of oligonucleotides antisense to the translation start region of cyclic AMP-dependent protein kinase (kinase A) mRNA inhibited thymidine incorporation into DNA (total or percentage of cells incorporating thymidine, as measured by autoradiography). This inhibition was apparent whether compared to controls with no oligonucleotide addition, sense oligonucleotides, or mismatch oligonucleotides. Enzymatic assays indicated that the antisense oligonucleotides lowered kinase A activity in cells. Time course studies indicated that the inhibition in DNA synthesis was not an artifact of the time at which DNA synthesis was estimated. Long-term (4 day) cultures indicated that effects on induction of DNA synthesis were reflected in long-term cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号