共查询到20条相似文献,搜索用时 26 毫秒
1.
PHILIPPE USSEGLIO-POLATERA 《Freshwater Biology》1994,31(3):417-437
- 1 For five orders of Insecta (Plecoptera, Ephemeroptera, Odonata, Trichoptera, and Coleoptera) in two sites of the Upper Rhône River (France), the following are examined: (i) relationships among nineteen species traits; (ii) habitat utilization of species; (iii) the relationship between species traits and habitat utilization; and (iv) trends of species traits and species richness in a templet of spatial-temporal habitat variability.
- 2 The species traits having the highest correlations correspond to reproduction, life cycle, nutritional, and morphological features. Species trait characteristics of Coleoptera are distinctly contrasted with those of Plecoptera and Ephemeroptera; Odonata and Trichoptera are intermediate to these orders.
- 3 The distribution of species in fourteen habitat types of the Upper Rhône River floodplain demonstrates a transverse gradient from the main channel to the oxbow lakes and the temporary water habitats, and a vertical gradient from interstitial to superficial habitats.
- 4 Despite a significant relationship between species traits and habitat utilization, superposition between species traits and habitat utilization is limited. At the order level, species form usually one (Ephemeroptera, Trichoptera, Odonata) or several (Coleoptera) groups of relatively homogeneous species traits; however, the species of each of these groups utilize rather different habitat types.
- 5 Only for some life history traits, e.g. the minimum age of reproduction or the number of reproductive cycles per year, do the trends observed in the framework of spatial—temporal variability of habitat types agree with the predictions from the river habitat templet. This mismatch mainly results from the unique phylogenetic history of the Coleoptera compared with that of the other four orders.
- 6 Species richness peaks at an intermediate level of temporal variability; however, it does not gradually increase with increasing spatial variability, nor increase from low to intermediate temporal variability.
2.
PHILIPPE RICHOUX 《Freshwater Biology》1994,31(3):377-395
- 1 To test predictions of the river habitat templet and the patch dynamics concept, trends in species traits and species richness of aquatic beetles were related to the spatial-temporal variability of eighteen habitat types in the alluvial floodplain of the French Upper Rhône River. One hundred and twenty species of beetles were used in this analysis.
- 2 The basic information was obtained either from the literature (for most of the species traits) or from observations made at approximately 500 sampling sites in the Brégnier-Cordon and Jons sections over the past 19 years (for habitat utilization). This information was structured by a fuzzy coding technique and examined by ordination analyses.
- 3 Analyses of the relationships among nineteen species traits revealed a clear distinction according to traits such as body form (for adults), functional feeding type and food (adults and larvae), attachment to the substrate and dissemination potential (adults and larvae), and patterns of aquatic and/or terrestrial life of adults and larvae. Species traits such as number of descendants per reproductive cycle, and number of reproductive cycles per year or per individual showed less contrast, because these traits are rather homogeneous in aquatic beetles.
- 4 Analyses of the habitat utilization by the aquatic beetles revealed a vertical gradient that separates interstitial from superficial habitats, and a transverse gradient for the superficial habitats, which extends from the main channel towards permanent oxbow lakes and temporary waters.
- 5 The significant relationship betweeen species traits and habitat utilization demonstrates that most beetle species use a particular set of habitat types with a particular set of species trait modalities.
- 6 Species traits of aquatic beetles are homogeneous but evidently very successful and are adapted to many potential conditions of spatial–temporal variability. Because of this homogeneity, observations on aquatic beetles do not support trends of traits in the framework of spatial–temporal variability predicted from the river habitat templet.
- 7 The observed species richness of aquatic beetles is low in habitat types with a low spatial–temporal variability, increases as spatial variability increases, and tends to be highest at intermediate temporal variability. This pattern matches predictions of the patch dynamics concept.
3.
- 1 This paper summarizes twenty years of ecological research on aquatic oligochaetes of the Upper Rhône River and its alluvial floodplain (France). Species traits of fifty species of the ninety taxa recorded from two areas Gons and Brégnier-Cordon) were used to examine the relationships among species traits, habitat utilization of these species, whether a relationship exists between species traits and habitat utilization, and the applicability of predictions from the river habitat templet and the patch dynamics concept in the framework of spatial and temporal habitat variability. We used fourteen habitat types and sixteen species traits in this analysis.
- 2 When examined by correspondence analysis, species traits separate the Naididae (with a higher potential for reproduction, small size, high mobility, and opportunistic diet) from all other families.
- 3 Habitat utilization by oligochaetes demonstrates two gradients: a vertical gradient that arranges species by their affinity for interstitial habitats (stygophily) and a transversal gradient that arranges them by their affinity for main channel habitats (rheophily).
- 4 No significant relationship was found between species traits and habitat utilization in a co-inertia analysis.
- 5 Trends observed for species traits within the framework of spatial-temporal habitat variability show only minor agreement with predictions of the river habitat templet.
- 6 Species richness is generally higher in superficial and interstitial habitats that are permanently connected with the main channel, and peaks in the superficial parapotamons (backwaters that are permanently connected with the main channel) characterized by intermediate levels of spatial as well as temporal variability; this pattern only partially fits with predictions of the patch dynamics concept.
4.
MICHEL BOURNAUD 《Freshwater Biology》1994,31(3):469-485
- 1 To test predictions of the river habitat templet and the patch dynamics concept, twenty species traits and the species richness of eighty-one bird species were examined in the context of the spatial – temporal variability of ninety-one sites at Jons, a section of the Upper Rhône River, France.
- 2 The basic information was obtained either from the literature (for species traits) or by observation, then structured by a fuzzy coding technique, and examined using multivariate analyses.
- 3 The relationships between species traits separated three groups of birds: (i) large species that are long lived, have long breeding cycles, and use open sites to feed, breed, and sing (e.g. Podicipidae, Laridae); (ii) medium-sized species with intermediate longevities and breeding cycles that use less open sites (e.g. Columbidae, Corvidae); and (iii) small species that are short lived, have short breeding cycles, and use closed sites (e.g. Sylviidae).
- 4 The distribution of birds in the floodplain habitats of the river was closely related to the spatial–temporal variability of sites.
- 5 No trends in species traits were observed along a gradient of spatial–temporal variability of the sites.
- 6 Species richness of birds was relatively constant over the gradient of spatial–temporal variability of the ninety-one sites, but decreased at low spatial and high temporal variability because of human activities and vegetation changes that occurred at these sites.
- 7 These observations on species traits and richness were related to the high mobility of birds (which is a scale phenomenon) and the high intercorrelation between parameters used to determine the spatial and temporal variability of the sites (which makes separation of the spatial from the temporal variability impossible).
5.
- 1 For Trichoptera occurring in two sites of the Upper Rhône River (France) we examine: (i) relationships among species traits; (ii) habitat utilization of Trichoptera species; (iii) the relationship between species traits and habitat utilization; (iv) trends of species traits in the framework of spatial–temporal habitat variability to test predictions of the habitat templet concept; and (v) trends of species richness in the framework of spatial–temporal habitat variability to test predictions of the patch dynamics concept.
- 2 Of the sixteen species traits selected, twelve have high correlation ratios for the seventy-five species used in this analysis; these traits are related to behavioural, morphological, or physiological aspects. Traits related to reproduction or life cycle have lower correlation ratios.
- 3 An ordination by species traits separates the five main families into three groups: (i) Hydropsychidae and Polycentropodidae; (ii) Hydroptilidae; and (iii) Leptoceridae and Limnephilidae. An ordination of the habitat utilization of the species in ten habitats indicates that the Hydropsychidae occur preferentially in the main channel, Hydroptilidae, Polycentropodidae, and Limnephilidae occur in backwaters or oxbow lakes, and the Leptoceridae are ubiquitous.
- 4 The Hydropsychidae exhibit a relationship between species traits and habitat utilization, i.e. they use similar habitat types with similar species traits. The species traits of the other four families are similar but their habitat utilization is quite different.
- 5 The Hydropsychidae occur in lowest spatial–temporal variability habitats and Limnephilidae in the highest. Therefore, net spinners and filterers are characteristic of habitats with a low spatial–temporal variability, whereas shredders and case makers using plant material are characteristic of habitats with high spatial–temporal variability. The trends in species traits show little agreement with trends predicted from the river habitat templet.
- 6 Trends of species richness in the framework of spatial and temporal variability do not follow the predictions of the patch dynamics concept because richness is similar in all superficial habitats. This implies that each habitat, in spite of large differences in their spatial and temporal variability, offers Trichoptera a similar but limited number of ecological niches.
6.
- 1 Recent developments in ecological theory concerned with habitat templets, species assemblages, and life history traits were examined for the riverine fish communities of the Upper Rhône River, France, in the context of spatial–temporal habitat variability. Relationships among species traits, habitat utilization of species, the relationship between species traits and habitat utilization, and trends of species traits and species richness in the spatial–temporal variability of the habitat types were analysed.
- 2 Relationships among twelve species traits, and utilization of eight habitats were examined for twenty-five fish species using correspondence analysis; the relationship between species traits and habitat utilization was investigated by co-inertia analysis.
- 3 Positive relationships among species traits were observed for size, fecundity, and the number of reproductive cycles per individual. However, species were not well differentiated according to the habitat utilization, except for habitats rarely connected with the main channel (i.e. two types of oxbow lakes).
- 4 No significant relationship was found between species traits and habitat utilization, nor for either species traits or species richness when examined in the framework of spatial–temporal habitat variability. Only two species traits corresponded (with slight trends) to predictions in a river habitat templet: (i) the number of descendants per reproductive cycle increased along with temporal variability; and (ii) the number of reproductive cycles per individual was either low or high at low temporal variability and intermediate at elevated temporal variability.
- 5 The discrepancy between the predictions of the river habitat templet as well as of the patch dynamics concept and the results observed for the fish in the Upper Rhône was explained in terms of scale problems, the evolutionary ecology of the European fish fauna, and the history of the Rhône River.
7.
- 1 The floodplain vegetation at approximately 100 sites located in nine different habitat types of the Upper Rhône River, France, was surveyed three times over the past 27 years. Information on species traits of the higher plants comprising the Rhône floodplain vegetation was based on studies conducted between Geneva, Switzerland, and Lyon, France.
- 2 These data were structured using a ‘fuzzy coding’ technique and then examined using ordination analyses to investigate: (i) relationships among species traits; (ii) habitat utilization; (iii) the relationship between species traits and habitat utilization; and (iv) trends of species traits and species richness in the framework of spatial–temporal habitat variability to test predictions of the river habitat templet and the patch dynamics concept.
- 3 Size, number of descendants per reproductive cycle, number of reproductive cycles per individual, and the regeneration potential of an individual were positively related with each other, whereas the degree of attachment to the soil decreased, and the reproductive period shifted from autumn/late summer towards early summer/spring, as size increased.
- 4 The habitat utilization by the higher plants of the floodplain revealed a double lateral gradient: the first was from the banks of the temporary waters to terrestrial flats; the second from aggrading pebble to aggrading silt habitats. These gradients were related to gradients in water saturation, oxygen conditions, nutrient loading, and nutrient retention of the soils.
- 5 A significant relationship between species traits and habitat utilization was observed for the floodplain vegetation, i.e. plant communities used particular habitat types with a particular set of species trait modalities (= categories).
- 6 Patterns of species trait modalities were significantly related to temporal and spatial habitat variability but only modalities of the trait ‘parental care’ conformed to trends predicted from theory.
- 7 No trends were observed when species richness of different habitat types was considered in the framework of spatial–temporal habitat variability.
- 8 Although the habitats of the Upper Rhône clearly act as a templet for the species traits of the floodplain vegetation, the lack of agreement between observations and predictions on trends in species traits and richness in terms of habitat variability suggest that important elements of theory should be rejected. However, human-induced changes in these habitats are too recent when compared with the longer time periods required for floodplain vegetation to respond to such changes.
8.
- 1 Ephemeroptera and Plecoptera in two sites of the Upper Rhône River (France) were examined using multivariate analyses to determine: (i) relationships among seventeen species traits; (ii) habitat utilization of the fifty-five species present; (iii) the relationship between species traits and habitat utilization; (iv) trends of species traits and species richness in a framework of spatial and temporal habitat variability.
- 2 The species traits having the highest correlation ratios correspond to reproduction or life cycle, behavioural, and morphological characteristics. According to their traits, species of Baetidae, Caenidae, and Leptophlebiidae (Ephemeroptera) are opposite species of Perlidae and Perlodidae (Plecoptera).
- 3 The distribution of species in thirteen habitat types of the Upper Rhône River floodplain demonstrates a transverse gradient from the main channel to the oxbow lakes. Plecoptera are restricted to the different main channel habitats; in contrast, Ephemeroptera families have a broader distribution with Baetidae and Leptophlebiidae occurring in most floodplain habitats.
- 4 Plecoptera exhibit a significant relationship between species traits and habitat utilization but no relationship is evident for Ephemeroptera. Baetidae use many habitat types and have diverse species traits; in contrast, Leptophlebiidae, Heptageniidae, and Caenidae use many habitat types but each family has a rather uniform set of traits.
- 5 Trends in species traits were significantly related to both the spatial and temporal variability of habitats. Considering only temporal variability, the distribution of species trait modalities (= categories) corresponded well to predictions on trends in the river habitat templet for ‘minimum age at reproduction’ and ‘potential longevity’, and in general for ‘descendants per reproductive cycle’, ‘reproductive cycles per year’, ‘potential size’, and ‘body flexibility’ trends in six other traits did not match predictions.
- 6 No trends in species richness were evident in spatial–temporal framework of habitat variability.
9.
- 1 For practical reasons, conceptual developments in community ecology are usually based on studies of a restricted systematic group. The cooperation of thirty or so specialists in the synthesis of long-term ecological research on the Upper Rhône River, France, provided a unique occasion to investigate relationships among species traits, the habitat utilization by species, the relationship between species traits and habitat utilization, and trends of species traits and species richness in the framework of spatial-temporal habitat variability for 548 species of plants (Hyphomycetes, aquatic macrophytes, floodplain vegetation) and animals (Tricladida, Oligochaeta, several groups of Crustacea, Insecta and Vertebrata).
- 2 Using correspondence analysis, 100 modalities of eighteen species traits were examined; the resulting typology demonstrates that systematic groups are the most important elements for separating species traits such as size, fecundity of individuals, parental care, mobility, body form, and food type. Small species have an intermediate number of descendants per reproductive cycle and few reproductive cycles both per year and per individual; in contrast, large species have a high number of descendants per reproductive cycle and few reproductive cycles per year but many potential reproductive cycles per individual.
- 3 The analysis of habitat utilization in the Upper Rhône River and its floodplain by the 548 species demonstrated a vertical gradient separating interstitial from superficial habitats; a transverse gradient for superficial habitats from the main channel towards more terrestrial ones is also evident.
- 4 Because of a significant (P < 0.01) relationship between species traits and habitat utilization, traits such as size, fecundity of individuals, parental care, tolerance to variation in humidity, and respiration are arranged along the vertical and transverse habitat gradient. Size, the number of reproductive cycles per individual, and the tolerance to variation of humidity increases from permanent waters to temporary waters, aggrading habitats, and terrestrial habitats.
- 5 Species traits showed significant (P < 0.01) trends in the framework of spatial-temporal habitat variability and were compared with predictions based on the river habitat templet. Although each habitat showed a mixture of species traits at low temporal and spatial variability, and at high variability sites, trends corresponded to predictions for three traits (number of descendants per reproductive cycle, number of reproductive cycles per individual, attachment to soil or substrate) along a gradient of increasing temporal habitat variability.
- 6 The species richness of each habitat within the Upper Rhône River and its floodplain significantly (P = 0.03) increased as the spatial variability of habitats increased but there is no statistical correlation between spedes richness and temporal variability. An altemative hypothesis predicting that fewer spedes per resource occur in temporally stable habitats is also not supported.
10.
- 1 Ostracods occurring at two sections of the Upper Rhône River, France, were examined to determine relationships among species traits, habitat utilization, the relationship between species traits and habitat utilization, and trends in species traits and species richness in the context of spatial and temporal variability of habitats. Twenty regularly sampled species were used in this study and fifteen species traits were considered.
- 2 Throe groups can be distinguished according to their species traits: group 1 has species of mixed sizes with high reproductive rates, short life span, spherical shape, long swimming bristles, low thigmotactism, and high resistance to desiccation; group 2 has medium-sized species with low reproductive rates, long life span, low or no tolerance to desiccation, geometric (trapezoidal, triangular) or streamlined carapace shape, no swimming bristles, and a strong thigmotactism; group 3 has the largest species with parthenogenetic reproduction, medium-sized swimming bristles, and flattened or cylindric carapace shape.
- 3 Ostracod habitat utilization segregates the superficial and interstitial habitats along a gradient from the main channel to the abandoned arms and to the temporary waters.
- 4 The co-structure (= relationship) between species traits and habitat utilization indicates that the species use particular habitats with a particular set of species trait modalities. Species with long life spans, late maturity, low fecundity, and low migratory ability are restricted to the interstitial habitats; the epigean species with long life spans, large size, and parental care are more abundant in permanent flowing and standing surface waters; the epigean species with short life spans, high migratory ability, and high tolerance to desiccation are more abundant in temporary ponds.
- 5 The analyses of the distribution of the species traits in a river habitat templet of spatial and temporal variability emphasized that the main disturbance structuring the Rhône River ostracod assemblage is desiccation.
- 6 Of the trends predicted for species traits in the framework of the river habitat templet, five (size, body form, attachment, reproductive technique, and mobility) are clearly opposite for ostracods (because the predictions were mainly established for flood-related disturbances) but four (life span, number of reproductive cycles per year, age at first reproduction, and desiccation tolerance) are in agreement.
- 7 No trends in ostracod species richness in the framework of spatial–temporal habitat variability were evident.
11.
VINCENT H. RESH† ALAN G. HILDREW‡ BERNHARD STATZNER§ COLIN R. TOWNSEND 《Freshwater Biology》1994,31(3):539-554
- 1 Based on information obtained from analysis of thirteen taxonomic groups of plants and animals occurring in the alluvial floodplain habitats of the Upper Rhône River, France, we synthesize results obtained on: (i) relationships among species traits; (ii) habitat utilization by species; (iii) the relationship between species traits and habitat utilization; (iv) trends in species traits in a framework of spatial and temporal variability; and (v) tests of trends predicted for species traits and species richness in the framework of spatial and temporal habitat variability in terms of the river habitat templet and patch dynamics concept.
- 2 Species traits describing reproductive characteristics, food, and size had the closest relationships with each other in the various correspondence analyses performed. Faunal and floral separation by species traits produced groupings similar to those based on traditional taxonomy.
- 3 Two major gradients appear in the utilization of the floodplain habitats: a vertical gradient from interstitial to superficial habitats; and a transverse gradient from the main channel to oxbow lakes, temporary waters, and terrestrialized habitats.
- 4 For the majority of the groups examined, a statistically significant relationship was evident between the structure of the species trait and habitat utilization arrays. For these groups, the characteristics of the habitat act as a templet for species traits. Moreover, species trait modalities (i.e. categories defining traits) were significantly arranged along the axis of spatial and temporal variability for most groups, which indicates that such variability acts as a templet for species traits.
- 5 Species traits did not conform to predictions of the river habitat templet because the observed modality sequences did not follow the trends predicted in a framework of spatial and temporal variability. Moreover, there was no clear pattern in the distribution of species traits along an axis of temporal variability for groups of organisms having different sizes, which is a correlate of longevity, nor did modalities of species traits that occur under conditions of low temporal variability also tend to occur under conditions of high spatial variability (or vice versa). Clearly, species traits occur as alternative suites of characteristics in various groups of organisms.
- 6 The patch dynamics concept, which predicts that highest species richness occurs at intermediate levels of temporal variability and highest levels of spatial variability, was supported by observations in only two of the thirteen groups exaniined, and only partially (for spatial variability) when all 548 taxa were examined together.
- 7 The predictions of the river habitat templet and patch dynamics concepts were not supported, perhaps because templet theories do not yet accommodate alternative suites of characteristics and trade-offs between combinations of traits, or perhaps because the single scale of variability considered in the analyses, the inhomogeneity of the available biological information, and the aggregation of spedes traits that were used created methodological problems.
- 8 Ecologically sound river management polides eventually may be based on two key points that emerged from this synthesis: that the habitat acts as a templet for spedes traits, and that composite taxonomic groupings represent relatively homogeneous assemblages of spedes trait modalities.
- 9 The use of statistical approaches developed in this project to analyse other long-term data sets may clarify questions about the applicability of habitat templet theories to river ecology, and hasten development of ecologically sound river management policies.
12.
BERNARD CELLOT † MARIE JOSÉ DOLE-OLIVIER GUDRUN BORNETTE GUY PAUTOU‡ 《Freshwater Biology》1994,31(3):311-325
- 1 This paper develops a framework of spatial and temporal variability for a habitat typology of the Upper Rhône River (France) and its alluvial floodplain that is based on about 17 years of data collection and analysis. The aim was to provide a scale of spatial-temporal variability for river habitat templet predictions on trends in species traits and species richness.
- 2 In developing this framework, eight physical-chemical variables were available and could be considered for twenty-two habitat types: seventeen superficial (surface) and five interstitial (0.5 m below the substrate surface). These habitat types were selected in two areas (Jons and Brégnier-Cordon) after geomorphological considerations and because of differences in their biological characteristics.
- 3 The data sets used were processed by a ‘fuzzy coding’ method using, for each variable, the frequency distribution (by modalities = categories) of all measurements and monthly means over an annual scale. Two tables were produced; the first corresponded to an expression of the total variability, and the second represented an evaluation of the temporal variability.
- 4 Each of these tables was analysed by correspondence analysis, which provided factorial scores that were used to calculate, by habitat type and by variable, a total variability and a temporal variability in terms of cumulated variability of factorial scores for the eight physical–chemical variables. The rationale in describing variability from these two tables is that total variability equals temporal variability plus spatial variability. The spatial variability was then determined by the difference between total and temporal variability. From this procedure, a positioning of the twenty-two habitat types on the spatial and temporal variability axes was obtained.
- 5 The estimate of spatial variability did not consider any error term that may have occurred in the above model; it was then tested by an independent assessment of the spatial variability using thirteen variables in nine major habitat types. A high correlation between the two ways of assessing spatial variability (r = 0.85, P < 0.004) underscored the reliability of the spatial variability that was calculated previously.
- 6 The river habitat templet obtained for the Upper Rhône and its alluvial floodplain appears to be appropriate to test the predictions on patterns of species traits and species richness in the framework of spatial and temporal variability.
13.
- 1 Using sites from the Upper Rhône River, France, as an example, the objective of this paper is to identify the essential elements needed to test current ecological theories with previously collected data. Procedures developed may enable other groups to design comparable research strategies for syntheses of long-term studies of ecological systems.
- 2 Because of the high number (more than 200) and turnover of researchers, the long study period (about 17 years), the evolution of research methods and interests, and the diverse systematic groups that were considered (from micro-organisms to birds), the data available for a synthesis were quite heterogeneous. The application of a ‘fuzzy coding’ technique allowed such disparate information to be structured for analysis.
- 3 The habitat templet concept and the patch dynamics concept were selected for analysis with existing data on the Upper Rhône because theories, such as these, that link ecological responses to habitat templets are a focus of current ecological debate and potentially may serve as a general tool for ecologically orientated river management.
- 4 A preliminary trial to structure the existing knowledge, to identify (and manage) gaps in it, and to create and apply the analytical tools in a way that predictions from theory could be tested was an essential element in the design of this project.
- 5 Predictions derived from the theoretical concepts had to match the format of the available information on the Upper Rhône; potential bias was avoided by having a priori predictions developed by previously uninvolved colleagues.
- 6 Synthesis of the long-term study of the Upper Rhône in the context of concurrently developed ecological theory required, at times, an unconventional research strategy. Hence, the generation of hypotheses and methods, the presentation of results, and consequently the discussions in papers of this special issue of Freshwater Biology (Statzner, Resh & Dolédec, 1994) represent an innovative approach to testing ecological theory.
14.
There is increasing evidence that the global climate change is already having measurable biological impacts. However, no study (based on actual data) has assessed the influence of the global warming on communities in rivers. We analyzed long‐term series of fish (1979–1999) and invertebrate (1980–1999) data from the Upper Rhône River at Bugey to test the influence of climatic warming on both communities. Between the periods of 1979–1981 and 1997–1999, the average water temperature of the Upper Rhône River at Bugey has increased by about 1.5°C due to atmospheric warming. In the same period, several dams have been built from 12.5 to 85 km upstream of our study segment and a nuclear power plant has been built on it. Changes in the community structure were summarized using multivariate analysis. The variability of fish abundance was correlated with discharge and temperature during the reproduction period (April–June): low flows and high temperatures coincided with high fish abundance. Beyond abundance patterns, southern, thermophilic fish species (e.g. chub, and barbel) as well as downstream, thermophilic invertebrate taxa (e.g. Athricops, Potamopyrgus) progressively replaced northern, cold‐water fish species (e.g. dace) and upstream, cold‐water invertebrate taxa (e.g. Chloroperla, Protoneumura). These patterns were significantly correlated with thermal variables, suggesting that shifts were the consequences of climatic warming. All analyses were carried out using statistics appropriate for autocorrelated time series. Our results were consistent with previous studies dealing with relationships between fish or invertebrates and water temperature, and with predictions of the impact of climatic change on freshwater communities. The potential confounding factors (i.e. dams and the nuclear power plant) did not seem to influence the observed trends. 相似文献
15.
Bird abundance and species richness on Florida lakes: influence of trophic status,lake morphology,and aquatic macrophytes 总被引:3,自引:0,他引:3
Data from 46 Florida lakes were used to examine relationships between bird abundance (numbers and biomass) and species richness, and lake trophic status, lake morphology and aquatic macrophyte abundance. Average annual bird numbers ranged from 7 to 800 birds km–2 and bird biomass ranged from 1 to 465 kg km–2. Total species richness ranged from 1 to 30 species per lake. Annual average bird numbers and biomass were positively correlated to lake trophic status as assessed by total phosphorus (r = 0.61), total nitrogen (r = 0.60) and chlorophyll a (r = 0.56) concentrations. Species richness was positively correlated to lake area (r = 0.86) and trophic status (r = 0.64 for total phosphorus concentrations). The percentage of the total annual phosphorus load contributed to 14 Florida lakes by bird populations was low averaging 2.4%. Bird populations using Florida lakes, therefore, do not significantly impact the trophic status of the lakes under natural situations, but lake trophic status is a major factor influencing bird abundance and species richness on lakes. Bird abundance and species richness were not significantly correlated to other lake morphology or aquatic macrophyte parameters after the effects of lake area and trophic status were accounted for using stepwise multiple regression. The lack of significant relations between annual average bird abundance and species richness and macrophyte abundance seems to be related to changes in bird species composition. Bird abundance and species richness remain relatively stable as macrophyte abundance increases, but birds that use open-water habitats (e.g., double-crested cormorant, Phalacrocorax auritus) are replaced by species that use macrophyte communities (e.g., ring-necked duck, Aythya collaris). 相似文献
16.
M. J. Doleolivier 《Freshwater Biology》1998,40(1):93-109
1. Hydrological exchange between the surface stream and the hyporheic zone is well documented in the main channel of rivers, especially at the reach scale. Hydrological processes of advection/convection occur at different scales, and in secondary channels of large rivers little is known about these exchanges in the hyporheic zone on a broad scale (i.e. kilometres). This work studied exchanges of water and biota in a secondary channel on a large scale (4 km), using a three-dimensional framework. 2. The exchanges of water were described using physicochemical indicators of surface and groundwaters. Samples of water and biota were taken in three dimensions: (i) vertically from benthic (i.e. 0.20 m below the surface of the substratum) to hyporheic (0.50 m) and deep interstitial (1.0 m) zones; (ii) laterally from the right to the left bank (i.e. right, middle and left positions); and (iii) longitudinally from upstream to downstream (seven stations regularly distributed along the channel). 3. The physicochemical indicators clearly revealed hydrological heterogeneity in the longitudinal and vertical dimensions, whereas lateral variability was not significant. 4. Spatial distribution of biota exhibited strong longitudinal variations that were not gradual as predicted by an upstream/downstream continuum, but patchy and discontinuous. No significant differences were found between the three positions across the channel. 5. Analyses of both physicochemical and faunal data sets produced matched ordination of samples and stations, indicating that interstitial–surface flow relationships appear to be an important governing factor in the distribution of interstitial biota at this broad scale. 6. Results are discussed in relation to the hypothetical three-dimensional models of the hyporheic zone in rivers. Contrasting with other observations on the main channel (where advection/convection patterns are dominated by morphological changes of the river-bed morphology), it is proposed that water exchanges in backwaters are more likely to be related to local modifications of stream-bed porosity. 相似文献
17.
Decomposition dynamics of aquatic macrophytes in the lower Atchafalaya, a large floodplain river 总被引:8,自引:0,他引:8
Decomposition of aquatic macrophytes can considerably influence carbon cycling and energy flow in shallow freshwater aquatic ecosystems. The Atchafalaya River Basin (ARB) is a large floodplain river in southern Louisiana that experiences a seasonal floodpulse and is spatially composed of a mosaic of turbid riverine and stagnant backwater areas. During two seasons, winter and fall of 1995, we examined decomposition of four common aquatic macrophytes in the ARB: water hyacinth (Eichhornia crassipes), arrowhead (Sagittaria platyphylla), coontail (Ceratophyllum demersum) and hydrilla (Hydrilla verticillata). To determine decay rates, we used litter bags of two mesh sizes (5 mm and 0.25 mm) and analyzed data with a single exponential decay model. Analysis of decay rates established several trends for aquatic macrophyte decomposition in the ARB. First, macrophytes decayed faster in fall than winter due to the effect of increased temperature. Second, macroinvertebrates were the primary decomposers of macrophytes in riverine sites and microbes were the primary decomposers in backwater areas. These trends may have been related to decomposer-habitat interactions, with well-oxygenated riverine sites more hospitable to invertebrates and backwater areas more favorable to microbes because of high organic inputs and reduced flow. Decay rates for macrophytes, ranked from slowest to fastest, were E. crassipes<S. platyphylla<C. demersum<H. verticillata. Slower decomposition of E. crassipes was probably a result of microbial inhibition by the waxy-cutin outer layer and low nutritional value. The accelerated decomposition of C. demersum and H. verticillata was most likely a function of the large surface area of the highly dissected leaves. Macroinvertebrate numbers were twice as high in riverine sites compared to backwater sites. In the winter, amphipods Gammarus spp. and Hyallela azteca composed a large percentage of the total density on detritus. In the fall, Caenis sp. was prevalent in the backwater habitat and dipterans were abundant in the riverine site. We investigated the microbial component involved in the decomposition of E. crassipes and S. platyphylla and found that the highest microbial respiration rates occurred early in the winter at the backwater site. Bacterial density in the winter on E. crassipes and S. platyphylla averaged 1.4×106 cm-2 after two days and decreased to 2.0×105 cm-2 after 28 d. Our results emphasized the importance of the microbial community in the decomposition of macrophytes in the ARB, especially in backwater habitats and in the early stages of decay. 相似文献
18.
SUMMARY 1. A study of microhabitat preferences was conducted on Zingel asper , an endangered endemic species from the Rhône catchment. A generalised linear model allowed us to test statistically the non-random habitat selection and the effect of season and site on this habitat selection.
2. The analysis detected significant preferences for the three physical variables considered: water depth, water velocity and substratum size.
3. A seasonal shift in the substratum size preference was found: preference for stones increasing during the spawning season. Depth preference varied between sites, suggesting a possible plasticity in habitat selection.
4. These results suggest that the availability of suitable physical habitat plays a significant role in determining fish distribution in the River Beaume. 相似文献
2. The analysis detected significant preferences for the three physical variables considered: water depth, water velocity and substratum size.
3. A seasonal shift in the substratum size preference was found: preference for stones increasing during the spawning season. Depth preference varied between sites, suggesting a possible plasticity in habitat selection.
4. These results suggest that the availability of suitable physical habitat plays a significant role in determining fish distribution in the River Beaume. 相似文献
19.
K. O. Winemiller 《Journal of fish biology》1991,39(5):617-639
The Upper Zambezi River drainage of Zambia contains six Serrunochromis species belonging to the largemouth, piscivorous subgenus Serranochromis and three smallmouth, invertebrate-feeding species of the subgenus Sargochromis. A survey of the Barotse floodplain and associateddrainages revealed that two species, S. (S.) longimanus (Boulenger) and S. (S.) thumbergi (Castelnau), were uncommon on the floodplain. S. thumbergi appeared to be more abundant in the Kafue, Chobe, and Kabompo rivers than the Upper Zambezi proper. Adults of the three largest species (i.e. S. (S) robustus (Günther), S. (S.) altus (Winemiller & Kelso-Winemiller), and S. (Sar.) giurdi (Pellegrin)) inhabit the main channel of the Zambezi River during low water, whereas most adults of the other four species (i.e., S. (S.) macrocephalus (Boulenger), S. (S.)ungusticeps (Boulenger), S. (Sar.) codringtoni (Boulenger), and S. (Sar.) carlottae (Boulenger)) were collected from lagoons, canals and backwaters. Comparisons of population size structure and gonad condition during the falling water (May-August) and low water (September- December) seasons indicated that the seven common Serranochromis initiate spawning near the end of the low water period. Examination of gonad condition during the pre-spawning period indicated that Serrunochromis attain maturity at the following sizes: S. robustus, males (275-300 mm s.l .), females (250-275 mm); S. macrocephalus, both sexes (150-200 mm); S. altus, males (275-325 mm), females (250-300 mm);S. angusticeps, males (250-275 mm), females (175-225 mm); S. giardi, males (275-300 mm), females (225-250 mm); S. codringtoni, males (150 mm), females (125-150 mm); S. carlottue, males (150-175 mm), females (100-125 mm). Age was estimated from scale annuli comprised of closely spaced circuli that corresponded to the period of rising water (December- March). S. robustus, S. altus, S. angusticeps, and S. giurdi matured at approximately 3 years, and S. macrocephalus, S. codringtoni, and S. curlottae matured at approximately 2 years in the Barotse floodplain. The average numbers of mature oocytes per female were as follows: S. robustus- 1165; S. macrocephalus-810; S. altus-920; S. angusticeps-627; S. codringtoni-580; S. carlottue-362. Fecundity exhibited a weak positive relationship with female size. Analysis of stomach contents showed that interspecific diet overlap was low among both immature and mature size classes of Serrunochromis. Adult size classes of S. robustus fed primarily on small Synodontis catfishes, S. mucrocephalus fed mostly on mormyrid and cichlid fishes, S. altus specialized on mormyrids, and S. angusticeps fed primarily on small cyprinid and characid fishes. The three members of the subgenus Sargochromis consumed mostly invertebrates. Molluscs were the most important item in the diet of S. giardi, and aquatic insects and fish scales were predominant in the diet of S. carlottae. Larger size classes of S. codringtoni consumed large amounts of seeds (Graminaceae). If habitat and diet are considered together, niche separation among Upper Zambezi Serrunochromis species appears to be nearly complete. 相似文献
20.
Martin Dallimer Andrew M. J. Skinner Zoe G. Davies Paul R. Armsworth Kevin J. Gaston 《Ecography》2012,35(2):134-145
Many animal populations continue to decline despite occurring in protected areas or on sympathetically managed sites. Frequently, this is because a specific habitat patch may not fulfil all the niche requirements of a threatened species. For instance, species often move between, and make use of, multiple habitat types for breeding, roosting and feeding within the same landscape. These cross‐habitat interactions present a challenge for conservation. Here we quantify how the habitat associations of individual species and assemblages occurring within two distinct but adjacent habitat types (moorland and farmland) determine a suite of density and richness indicators, using the bird community of the English uplands as a case study. There was a clear association between onsite avian density and richness and offsite habitat structure (e.g. vegetation height, percent cover of dominant plant species, land management practices). Although such effects are not universal across all species and assemblages, where present (for five farmland and three moorland indicators) the increase in explanatory power offered by including offsite habitat structure can be large. By constructing scenarios of possible changes to management practice on both moorland and farmland, we demonstrate a real conservation benefit can be obtained by altering management in offsite habitats. For example, reducing burning intensity on moorland can result in a five‐fold increase in snipe Gallinago gallinago density on farmland, without an alteration in farmland habitat. For one species (Eurasian curlew Numenius arquata), we demonstrate the frequency with which birds move between and utilise farmland and moorland during the breeding season, and therefore the importance of both habitat types to maintaining population densities. The multiple habitat dependency phenomenon quantified here is common and not restricted to birds. The successful conservation of many threatened species will thus depend on coordinated cross‐habitat management. 相似文献