首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-five normally cyclic Holstein heifers were used to examine the effects of oxytocin on cloprostenol-induced luteolysis, subsequent ovulation, and early luteal and follicular development. The heifers were randomly assigned to 1 of 4 treatments: Group SC-SC (n=6), Group SC-OT (n=6), Group OT-SC (n=6) and Group OT-OT (n=7). The SC-SC and SC-OT groups received continuous saline infusion, while Groups OT-SC and OT-OT received continuous oxytocin infusion (1:9 mg/d) on Days 14 to 26 after estrus. All animals received 500 microg, i.m. cloprostenol 2 d after initiation of infusion (Day 16) to induce luteolysis. Groups SC-OT and OT-OT received oxytocin twice daily (12 h apart) (0.33 USP units/kg body weight, s.c.) on Days 3 to 6 of the estrous cycle following cloprostenol-induced luteolysis, while Groups SC-SC and OT-SC received an equivalent volume of saline. Daily plasma progesterone (P4) concentrations prior to cloprostenol-induced luteolysis and rates of decline in P4 following the induced luteolysis did not differ between oxytocin-infused (OT-OT and OT-SC) and saline-infused (SC-SC and SC-OT) groups (P >0.1). Duration of the estrous cycle was shortened in saline-infused heifers receiving oxytocin daily during the first week of the estrous cycle. In contrast, oxytocin injections did not result in premature inhibition of luteal function and return to estrus in heifers that received oxytocin infusion (OT-OT). Day of ovulation, size of ovulating follicle and time of peak LH after cloprostenol administration for oxytocin and saline-treated control heifers did not differ (P >0.1). During the first 3 d of the estrous cycle following luteal regression, fewer (P <0.01) follicles of all classes were observed in the oxytocin-infused animals. Day of emergence of the first follicular wave in heifers treated with oxytocin was delayed (P <0.05). The results show that continuous infusion of oxytocin during the mid-luteal stage of the estrous cycle has no effect on cloprostenol-induced luteal regression, timing of preovulatory LH peak or ovulation. Further, the finding support that an episodic rather than continuous administration of oxytocin during the first week of the estrous cycle results in premature loss of luteal function. The data suggest minor inhibitory effects of oxytocin on follicular growth during the first 3 d of the estrous cycle following cloprostenol-induced luteolysis.  相似文献   

2.
Development and demise of luteal structures were monitored using daily transrectal ultrasonography in 2 breeds of sheep differing in ovulation rates (nonprolific Western white-faced cross-bred, n = 12 and prolific pure-bred Finn sheep, n = 7), during 1 estrous cycle in the mid-breeding season. Jugular blood samples were collected once a day for radioimmunoassay (RIA) of progesterone. The mean diameter of ovulatory follicles was higher in Western white-faced than in Finn ewes (6.4 +/- 0.2 and 5.3 +/- 0.2 mm, respectively; P < 0.001). The mean volume of luteal structures was higher (P < 0.05) in Western white-faced compared with Finn sheep from Days 5 to 15 of the cycle (Day 0 = day of ovulation). This accounted for the higher (P < 0.05) total luteal volumes recorded in Western white-faced ewes on Day 7 and from Days 11 to 15, despite the higher ovulation rate in Finn ewes (2.7 +/- 0.3 and 1.7 +/- 0.2, respectively; P < 0.05). Mean serum progesterone concentrations were higher (P < 0.05) in Western white-faced than in Finn ewes from Days 4 to 14. Daily total luteal volumes were positively correlated with daily serum progesterone concentrations throughout the cycle in Finn sheep (r > or = 0.40, P < 0.02), and during luteal growth and regression (r > 0.60, P < or = 0.00001) but not during mid-cycle in white-faced ewes (r = 0.16; P = 0.22). During the growth of the corpora lutea (CL), luteal tissue volume increased faster (P < 0.05) than serum progesterone concentrations in both breeds of sheep. During luteolysis, the decrease in luteal volumes parallelled that in serum progesterone concentrations in Finn (P = 0.11) but not in Western white-faced ewes, where luteal volumes decreased more slowly (P = 0.02) in relation to progesterone secretion. Increased ovulation rate in prolific Finn ewes resulted in more but smaller CL, and lower serum progesterone levels compared with nonprolific Western white-faced ewes. We conclude that breed-specific mechanisms exist to control the formation of luteal tissue and progesterone secretion in cyclic ewes differing in prolificacy. The mechanisms may involve ovulation of Graafian follicles at different sizes and inhibitory paracrine effects of CL on co-existing CL.  相似文献   

3.
Immature pregnant mare's serum gonadotropin-treated rats were hypophysectomized on the day of ovulation (Day 1 of luteal function), and luteal steroidogenesis and human chorionic gonadotropin (hCG) and prolactin (Prl) binding sites were determined on Days 5, 10, 20 and 30 (H5- H30 ) compared with intact rats on Days 5 or 10 (C5 or C10). On H5, dispersed luteal cells secreted large amounts of progesterone (P), 20 alpha-dihydroprogesterone (20 alpha-DHP), 17 alpha-hydroxyprogesterone (17 alpha-OHP), and small amounts of testosterone (T) and estradiol-17 beta (E2), but between H10 and H30 , reduced levels of all steroids were produced except for 20 alpha-DHP. Addition of large amount of pregnenolone (P5) or P (100-1000 ng) to dispersed luteal cells increased production of P and 20 alpha-DHP in C5 and H5 rats. The higher serum levels and basal in vitro production of 20 alpha-DHP from H5 to H30 indicates that 20 alpha-oxidoreductase persists in the corpora lutea (CL) at high levels and that 3 beta-ol-dehydrogenase is also present but with P rapidly shunted into its principal metabolite. From H5 to H30 , addition of 10 ng P to luteal cells increased the production of 17 alpha-OHP and addition of 10 ng androstenedione (A) or T enhanced production of T and E2, indicating that 17 alpha-oxidoreductase, 17 beta-hydroxysteroid dehydrogenase and aromatase also persist in the CL. In vitro addition of 10 ng LH significantly stimulated production of P from luteal cells on C5 and H5, whereas on C10 and H10, 100 ng LH was required and on H20 and H30 , 1 microgram LH produced a minimal increase in P.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We measured uptake and metabolism of progesterone (P4) during the estrous cycle and Days 2-6 of pseudopregnancy (PSP) to determine uterine P4 dynamics during preimplantation. Rats were infused with [3H]P4 for 60 min, blood was obtained, the uterus was removed, and endometrium and myometrium were isolated. Tissue radiolabeled P4 and P4 metabolites (5 alpha-pregnane-3,20-dione, DHP; 20 alpha-hydroxy P4; 17 alpha-hydroxy P4, and hydroxylated DHP derivatives) were extracted and separated by thin-layer chromatography (TLC). Serum P4 was measured by radioimmunoassay (RIA) in another group of rats. Endometrial and myometrial concentrations of [3H]P4 were greater (p less than 0.05) than plasma values. In contrast, [3H]DHP levels in the endometrium were higher (p less than 0.01) than values in myometrium or plasma. Compared to values in the estrous cycle, endometrial ratios of [3H]DHP/[3H]P4 and [3H]metabolites/[3H]P4 decreased (p less than 0.02) on Days 3-5 of PSP. Serum P4 levels during the estrous cycle (13-25 ng/ml) increased (p less than 0.01) to 120 ng/ml on Days 3-5 of PSP. Estimated concentration of P4 in the endometrium during the estrous cycle (90 ng/g) increased (p less than 0.05) to 580 ng/g by Day 5 of PSP. Similar observations were noted for the estimated endometrial concentrations of DHP and all P4 metabolites. We suggest that both endometrium and myometrium take up and metabolize P4 during the estrous cycle and early PSP. However, endometrial P4 metabolism during PSP is greater than during the estrous cycle, in part because of increased ovarian secretion and endometrial concentration of P4.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In two genetic swine models selected for diversity in ovulation rates (White composite controls and ovulation rate selection line, n = 131; 1/2 White composite: 1/2 Meishan crossbreds, n = 387), a positive relationship was established with liver weight and ovulation rate (P < 0.01). Serum changes of cholesterol, albumin and alpha2-macroglobulin were monitored during various stages of the luteal phase and follicular phase (days 17 and 19 of the estrous cycle; 1/2 White composite: 1/2 Meishan gilts). Serum cholesterol concentrations increased with liver weights (r = 0.19; P < 0.01) and corpora lutea numbers (r = 0.14; P < 0.01). Albumin concentrations were negatively correlated with corpora luteal numbers (r = -0.3; P < 0.01) but had no relationship with liver weight. Serum concentrations of alpha2-macroglobulin were not related to liver weight or corpora lutea numbers. Circulating concentrations of cholesterol and alpha2-macroglobulin increased with day of the estrous cycle (P < 0.01). Testosterone concentrations were inversely related to circulating cholesterol concentrations during the estrous cycle, but testosterone concentrations on day 17 or 19 of the cycle were unrelated to corpora lutea numbers. Concentrations of estrone on day 17 or 19 (as an index of follicles destined to ovulate) were also not related to numbers of corpora lutea. Many interactions between liver and ovarian function involving metabolic and endocrine systems are plausible, but defined mechanisms resulting in coordinate increases in liver weight and ovulation rates are presently unelucidated.  相似文献   

6.
The objective of this experiment was to assess the relationship between electrical resistance of the vaginal mucosa and serum concentrations of estradiol (E2) and progesterone (P4) during the estrous cycle in ewes. Vaginal impedance was recorded daily using a 2-electrode impedometer in 10 nonprolific Western white-faced and 7 prolific Finn ewes, during the mid-breeding season (October to December). Transrectal ultrasonography of ovaries was performed once a day to confirm ovulation and monitor follicle growth (follicles > or =3 mm in diameter) and development of corpora lutea (CL). Jugular blood samples were collected daily for radioimmunoassay (RIA) of estradiol and progesterone. In all ewes, a decline in vaginal impedance (to <40 ohms) was closely associated with the onset of behavioral estrus. In both breeds of sheep, there was no significant correlation between daily serum concentrations of estradiol and vaginal impedance throughout the estrous cycle. Daily serum concentrations of progesterone and the E2:P4 ratio were correlated with vaginal impedance during the period of luteolysis and follicular phase in both breeds (Western white-faced ewes: r = 0.62, P = 0.0002 and r = -0.56, P = 0.0002; Finn ewes: r = 0.61, P = 0.001 and r = -0.45, P = 0.03, respectively) and early in the cycle (Days 0 to 2, Day 0 = day of ovulation) in white-faced ewes (r = 0.61, P = 0.0003 and r = -0.36, P = 0.052, respectively) but not during the remaining portion of the luteal phase in either breed. In conclusion, vaginal mucous impedance appears to be primarily controlled by progesterone, but it also changes in response to shifts in the E2:P4 ratio when progesterone concentrations are low. Impedometric characteristics of the vaginal mucosa in cyclic ewes are an indicator of serum concentrations of progesterone and E2:P4 ratios during the terminal stage of the estrous cycle.  相似文献   

7.
To determine whether luteinizing hormone (LH) secretion during the first estrous cycle postpartum is characterized by pulsatile release, circulating LH concentrations were measured in 8 postpartum mares, 4 of which had been treated with 150 mg progesterone and 10 mg estradiol daily for 20 days after foaling to delay ovulation. Blood samples were collected every 15 min for 8 h on 4 occasions: 3 times during the follicular phase (Days 2-4, 5-7, and 8-11 after either foaling or end of steroid treatment), and once during the luteal phase (Days 5-8 after ovulation). Ovulation occurred in 4 mares 13.2 +/- 0.6 days postpartum and in 3 of 4 mares 12.0 +/- 1.1 days post-treatment. Before ovulation, low-amplitude LH pulses (approximately 1 ng/ml) were observed in 3 mares; such LH pulses occurred irregularly (1-2/8 h) and were unrelated to mean circulating LH levels, which gradually increased from less than 1 ng/ml at foaling or end of steroid treatment to maximum levels (12.3 ng/ml) within 48 h after ovulation. In contrast, 1-3 high-amplitude LH pulses (3.7 +/- 0.7 ng/ml) were observed in 6 of 7 mares during an 8-h period of the luteal phase. The results suggest that in postpartum mares LH release is pulsatile during the luteal phase of the estrous cycle, whereas before ovulation LH pulses cannot be readily identified.  相似文献   

8.
Steroidogenesis was compared between luteal cells from immature pseudopregnant (PSP) rats induced by either 5 IU pregnant mare serum gonadotropin (PMSG) alone or 50 IU PMSG combined with 25 IU human chorionic gonadotropin (hCG). It was also determined whether differences in steroidogenesis existed when the entire ovary (ovarian cells) or just luteal cells from Day 4 PSP rats were exposed in vitro to lipoproteins or 25-hydroxycholesterol (25-OH chol). In the absence of luteinizing hormone (LH), basal steroid accumulation, especially progesterone (P4) was around fourfold greater in luteal cells from rats treated with PMSG alone than from rats receiving PMSG-hCG. However, serum P4 and LH were about fivefold greater in the latter group. It is therefore likely that net cellular cholesterol uptake per luteal cell is lower in the PMSG-hCG treated rats, but this is offset by a much greater mass and number of corpora lutea. Lipoproteins (HDL and LDL) and 25-OH chol stimulated in vitro luteal steroidogenesis from rats treated with PMSG alone or PMSG-hCG, and their responses were virtually identical. Therefore, luteal steroidogenesis in the rat always depends on exogenous cholesterol even though treatment in the preovulatory period with PMS or PMSG-hCG and serum LH and follicle-stimulating hormone (FSH) levels on Day 4 PSP are very different. When ovarian cells from PMSG-hCG treated rats were incubated with LH plus HDL or 25-OHP, the production of 20 alpha-DHP was considerably greater than luteal cell production which may be due to a contribution from nonluteal cells. Indeed, about 30% of the cells in the PMSG-hCG group represent nonluteal components as estimated by weight and deoxyribonucleic acid content.  相似文献   

9.
Consecutive daily plasma levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), estradiol-17 beta (E2), progesterone (P4) and 20 alpha-hydroxypregn-4-en-3-one (20 alpha-OHP) were monitored in estrous rabbits and in these same doses during pseudopregnancy (PSP); these daily hormone levels, as well as the immediate post-coital changes in gonadotropin secretion, were similar to those in previous reports. To examine the pulsatile patterns of the gonadotropins and ovarian steroids, sequential, 10-min plasma samples were collected for 6 h from estrous does and on Days 3, 10, and 17 of PSP. All five hormones were measured in the serial samples from estrous and PSP Day 10 does; LH and FSH only were assayed in the remaining sequential samples. The amplitude and frequency of FSH pulses did not differ between any of these stages. In marked contrast, LH pulse amplitudes, and even pulse frequencies in Day 17 does, were profoundly increased during PSP above those in estrous does. Progestin secretions, both P4 and 20 alpha-OHP, also were sharply elevated in PSP Day 10 does as compared with those in estrous rabbits; the pulse amplitudes of both progestins were severalfold higher during PSP. P4 pulse frequencies were also increased at this time. Conversely, the parameters of E2 secretion did not differ between estrous and PSP Day 10 animals. In PSP Day 10 does, high amplitude pulses of both P4 and 20 alpha-OHP occurred simultaneously with high amplitude LH pulses. Simultaneous E2 and P4 pulses were evident in these same sequential plasma samples, and this E2-P4 pulse association was greater than that of 20 alpha-OHP pulses with E2 pulses. Our findings failed to identify conclusively the trophic stimulus for the progestin pulse patterns, but the mechanism may involve the coordinated action of LH and E2. The results do demonstrate that each gonadotropin and ovarian steroid is secreted in a pulsatile manner in both estrous and pseudopregnant rabbits. There are altered profiles in LH and progestin pulses, without major changes in FSH and E2 patterns, between the stages of estrus and PSP. The causes and consequences of these divergent endocrine shifts cannot be deduced from these data.  相似文献   

10.
In CFY rats pseudopregnancy (PSP) was induced by mechanical stimulation of cervix uteri. On the days 1 or 7 of PSP indvelling catheter was built in one of the jugular veins and blood was collected daily until 7th or 14th days of PSP respectively, meanwhile the animals were daily injected with clenbuterol (0.1 mg/kg bw), fenoterol (0.5 mg/kg bw), ritodrin (1.0 mg/kg bw), propranolol (2.0 mg/kg bw) or 1.0 ml/kg bw 0.9% NaCl subcutaneously. From the blood samples progesterone (P) and oestradiol-17 beta (E2) were determined by RIA. beta 2-adrenergic agonists did not influence the serum levels of P either in the first or in the second half of PSP and the propranolol failed to alter also the serum levels of P during the PSP. Clenbuterol and ritodrin, however, decreased the serum levels of E2 in the first half of PSP, while in the second half of PSP fenoterol and ritodrin elevated, the propranolol diminished it. It was supposed that in PSP rats beta 2-adrenergic mechanism has a more pronounced effects on the theca-interstitial cells than that of the luteal cells.  相似文献   

11.
The effects on spontaneous ovulation associated with the unilateral or bilateral sectioning of the superior ovarian nerves (SON) were analyzed in guinea pigs at different time intervals of the estrous cycle. Day 1 of the estrous cycle was defined as the day when the animal presents complete loss of the vaginal membrane (open vagina). Subsequent phases of the cycle were determined by counting the days after Day 1. All animals were autopsied on the fifth day of the estrous cycle after surgery. Sectioning the right, left, or both SONs on day 5 (early luteal phase) resulted in a significant increase in the number of fresh corpora lutea. Ovulation increased significantly when the left SON (L-SON) was sectioned during late follicular phase (day 1) and medium luteal phase (day 8). When surgery was performed on days 1 or 8, neither sectioning the right SON (R-SON) nor sectioning the SON bilaterally had an apparent effect on ovulation rates. Similarly, ovulation rates were not affected when unilateral (right or left) or bilateral sectioning of the SON was performed during late luteal phase two (day 12). Unilateral or bilateral sectioning of the SON performed during the early luteal phase (day 5) was associated with a significant decrease in uterine weight. A comparable effect was observed when the L-SON was sectioned during late follicular phase (day 1), or medium luteal phase (day 8). No effects on uterine weight were observed when unilateral or bilateral sectioning of the SON was performed during late luteal phase. Our results suggest that in the guinea pig the SON modulates ovulation, and that the degree of modulation varies along the estrous cycle. The strongest influence of the SONs on ovulation occurs during early luteal phase, and decrease thereafter, being absent by late luteal phase. In addition, sectioning the left or the right SON caused different responses by the ovaries of adult guinea pigs. This paper discusses the mechanisms by which ovulation increased when the SON was surgically cut.  相似文献   

12.
Changes in lipid contents and fatty acid compositions of each lipid fraction were examined in corpora lutea from 34 unmated ewes between Days 8 and 16 of the estrous cycle and from 6 ewes at Day 16 of pregnancy. Four patterns were observed during advancement of the estrous cycle. Luteal concentrations of free cholesterol and triglyceride (neutral lipids) increased between Days 14 and 16, during luteal regression, in a manner approximated by exponential functions of time, whereas luteal concentrations of phospholipid (polar lipids) increased and then decreased between Days 8 and 16 in a manner approximated by a sin function of time. Likewise, within the various lipid class component fatty acids, changes in palmitic acid weight percentages were approximated by sin functions of time, whereas arachidonic acid weight percentages increased between Days 14 and 16 in a manner approximated by exponential functions of time. Pregnancy either inhibited or reversed the changes in luteal lipid profiles, especially arachidonic acid percentages, between Days 14 and 16 of the estrous cycle. Luteal lipid profiles of corpora lutea from Day 16 pregnant sheep approximated lipid profiles of corpora lutea recovered from sheep between Days 12 and 14 of the estrous cycle. Comparison of luteal lipid profiles after tissue incubations at either 0 or 37 degrees C for 2 h revealed an effect of reproductive status on fatty acid metabolisms at Day 16. Changes observed in luteal lipid contents and fatty acid compositions during advancement of the estrous cycle represent aspects of lutein cell maturation and impending senescence that can be inhibited or reversed by pregnancy.  相似文献   

13.
The cyclic patterns of hormones which regulate the activity of the oviduct in the cow have not been adequately reported. We studied progesterone (P4), estradiol 17 beta (E2), prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2 alpha), oxytocin (OT) and endothelin-1 (ET-1) concentrations in the cow oviduct. Reproductive tracts from cyclic Holstein cows in the follicular phase (n = 5), post ovulation phase (n = 5) and luteal phase (n = 5) were collected at a slaughterhouse. Oviducts were separated from the uterus, the lumen vas washed with physiological saline, and the enveloping connective tissues were removed. The fimbria was then separated at first and then the rest was divided into 2 parts of equal length (proximal and distal). After extraction, levels of different hormones in the tissues were measured using double antibody enzyme immunoassays (EIAs). There were no differences in any hormone concentration between the 3 parts of the oviduct at any stage of the estrous cycle. The highest concentration of oviductal P4 was observed during the luteal phase and in the oviduct ipsilateral to the functioning CL. Oviductal OT was unchanged throughout the cycle. The highest E2 concentration was observed during the follicular phase in the oviduct ipsilateral to the dominant follicle. The oviduct ipsilateral to the dominant follicle during the follicular phase and ipsilateral to the ovulation site post ovulation showed higher levels of PGE2, PGF2 alpha and ET-1 than those on the contralateral side or during the luteal phase. The highest PGE2 was observed in the oviduct ipsilateral to the ovulation site during the post ovulation phase. The results suggest that the ovarian products (P4, OT and E2) and the local oviductal products (PGE2, PGF2 alpha, and ET-1) may synergistically control oviductal contraction for optimal embryo transport during the periovulatory period, and provide further evidence for the local delivery of ovarian steroids to the adjacent reproductive tract.  相似文献   

14.
15.
Burke JM  Rorie RW 《Theriogenology》2002,57(6):1733-1742
The objective was to examine follicular and luteal development and function in mature, lactating beef cows grazing endophyte free (E-) or endophyte infected (E+) tall fescue during the early postpartum period. Angus, Hereford, and Angus x Hereford cows were exposed to pasture for 37-39 days before synchronized estrus. Serum concentrations of prolactin were evaluated during the luteal phase before the synchronized estrus. Every Monday, Wednesday, and Friday for one estrous cycle ovaries were monitored by transrectal ultrasonography and blood was collected for determination of serum concentrations of progesterone and estradiol in cows that responded to synchronization. Signs of fescue toxicosis in E+ cows included decreased serum concentrations of prolactin (84.9+/-13.6 pg/ml versus 32.3+/-12.0 pg/ml; P < 0.009) measured during the luteal phase (day 37 of grazing) and decreased body condition of cows and weight of cows and calves (P < 0.001). Neither serum concentrations of progesterone or estradiol, nor diameter of the CL differed between treatments. Diameter of the largest follicle tended to be smaller for cows grazing E+ fescue, especially between days 8 and 12 of the estrous cycle (P < 0.08). Numbers of class 1 (3-5 mm) and class 3 (>10 mm) follicles were similar (P > 0.05) between treatments, but number of class 2 (6-9 mm) follicles was reduced in E+ cows for most of the cycle (days 10 through 20; P < 0.03). Length of synchronized estrous cycle, days open, calving interval, and pregnancy rate at 30, 45, 60, and 90 days post-breeding was similar (P > 0.05) among treatment groups. Even though follicular dynamics (diameter of the largest follicle and number of class 2 follicles) were altered in cows grazing E+ tall fescue, follicular function was apparently not affected by ergot alkaloids.  相似文献   

16.
Structural and functional development of the corpus luteum (CL) involves tissue remodeling, angiogenesis, lipid metabolism, and steroid production. The peroxisome proliferator-activated receptors (PPARs) have been shown to play a role in these as well as in a multitude of other cellular processes. To examine the expression of mRNA corresponding to the PPAR family members (alpha, delta, and gamma) in luteal tissue, ovaries were collected from gonadotropin-treated, immature rats on Days 1, 4, 8, and 14 of pseudopregnancy and from adult, cycling animals on each day of the estrous cycle. Ovaries were processed for in situ hybridization or RNA isolation for analysis by RNase protection assay. The expression of PPARgamma mRNA was abundant in granulosa cells of developing follicles during both pseudopregnancy and the estrous cycle and was low to undetectable in CL from pseudopregnant rats. However, luteal tissue in cycling animals, especially CL remaining from previous cycles, had high levels of PPARgamma mRNA. The PPARalpha mRNA was localized mainly in the theca and stroma, and PPARdelta mRNA was expressed throughout the ovary. Levels of mRNA for PPARgamma decreased between Days 1 and 4 of pseudopregnancy, and PPARalpha mRNA levels were lower on the day of estrus compared to pro- and metestrus (P < 0.05). The PPARdelta mRNA levels remained steady throughout the estrous cycle and pseudopregnancy. These data illustrate a difference in the luteal expression of mRNA for PPARgamma between the adult, cycling rat and the immature, gonadotropin-treated rat. This differential pattern of expression may be related to the difference in timing of the preovulatory prolactin surge, because the gonadotropin-primed animals would not experience a prolactin surge coincident with the LH surge, as occurs in adult, cycling animals. Additionally, the expression pattern of PPARdelta mRNA indicates that it may be involved in cellular functions involved with maintaining basal ovarian function, whereas PPARalpha may play a role in lipid metabolism in the theca and stroma.  相似文献   

17.
Whisnant CS  Burns PJ 《Theriogenology》2002,58(6):1229-1235
Two trials were designed to test whether a single treatment with a microsphere formulation of progesterone (P) could simulate the luteal phase of the estrous cycle and lead to estrus and subsequent luteal development. The first experiment was to characterize the pattern of serum P concentrations and estrus in cows treated with a microsphere formulation (P + E) that contained 625 mg P and 50 mg estradiol (E). Four cows with palpable corpora lutea were treated with 25 mg prostaglandin F2 m. Each cow was given P + E (i.m.) 12 h later. Tail vein blood samples were taken on Days 1 and 2 following P + E treatment and then three times weekly for 24 days. Serum P increased from 0.8 +/- 0.1 ng/ml at P + E treatment to 4.7 +/- 0.6 ng/ml on Day 1, declined gradually to 4.1 +/- 0.3 ng/ml on Day 7 and then declined more rapidly to 0.6 +/- 0.1 ng/ml on Day 13. Treated cows showed estrus 16.25 +/- 0.7 days after P + E treatment. Thereafter, serum P increased beginning on Day 20 after P + E treatment, as expected following estrus. In Experiment 2, Angus and Simmental heifers (10.5-11.5 months of age) were administered i.m. either the vehicle (controls), E (50 mg), P (625 mg) or P + E (n = 13 per group). While treatment with E resulted in behavioral estrus (1-2 days after treatment) in each treated heifer, it did not (P > 0.5) initiate estrous cycles as indicated by subsequent increased serum P. In contrast, the P and P + E treatments increased (P < 0.05) the proportion (11/13) of heifers that showed estrus by 21 days after treatment followed by elevated serum P. We conclude that the microsphere formulation of P simulated the pattern of serum P concentrations during the luteal phase of the estrous cycle and initiated estrous cycles in peripubertal heifers with or without E.  相似文献   

18.
The objective of the experiment was to examine the interaction of endophyte-infected tall fescue and environmental temperature on follicular and luteal development and function in beef heifers. Heifers were fed endophyte-free or endophyte-infected tall fescue seed at thermoneutral or heat stress temperatures (n = 6/treatment) 4 wk before and 3 wk after synchronized ovulation. All heifers were subjected to thermoneutral conditions (19 degrees C, 50% relative humidity) from Days -7 to -2; temperature increased incrementally from Days -1 to 0 and cycled between 25 degrees C and 31 degrees C between Days 1 and 20 for heat-stressed heifers. Serum was collected and ovaries monitored every other day after induced luteolysis between Days 1 and 23 or until ovulation. Size and location of follicles >4 mm and corpora lutea were recorded. Serum concentrations of prolactin were reduced in heat-stressed heifers fed infected seed and both heat stress and infected seed decreased total cholesterol. Rectal temperature and respiration rate were greatest in heifers fed the infected seed when exposed to maximal temperatures. Heat stress led to reduced diameter of the corpus luteum and serum progesterone compared with thermoneutral conditions. Progesterone was reduced more so in heifers fed infected seed. The combination of infected seed and heat stress was associated with reduced diameter of the preovulatory dominant follicle, and consumption of infected seed led to fewer large follicles during the estrous cycle. Both stressors led to reduced serum estradiol. Impaired follicle function may explain reduced pregnancy rates commonly observed in heifers grazing infected tall fescue pasture.  相似文献   

19.
To determine the physiological significance of tumor necrosis factor-alpha (TNFalpha) in the regulation of endometrial prostaglandin (PG) release in cattle, we investigated the effects of TNFalpha on the secretion of PGE2 and PGF2alpha by bovine endometrium during the estrous cycle. Bovine uteri were classified into six stages (estrus: Day 0, early luteal 1: Days 2 to 3, early luteal 11: Days 5 to 6, mid-luteal: Days 8 to 12, late luteal: Days 15 to 17 and follicular: Days 19 to 21). After 1 h of pre-incubation, endometrial tissues (20 to 30 mg) were exposed to 0 or 0.6 nM TNFalpha for 4 h. The PGE2 concentrations in the medium were higher in the luteal stages than in the follicular stage and in estrus. In contrast, PGF2alpha concentrations were higher in the follicular stage and in estrus than in the luteal stages. The ratio of the basal concentrations of PGE2 and PGF2alpha (PGE2/PGF2alpha ratio) was higher in the luteal stages than in the follicular stage and in estrus. Although TNFalpha stimulated both PGE2 and PGF2alpha secretion during the entire period of the estrous cycle, the level of stimulation of TNFalpha on PGE2 output by the bovine endometrium does not show the same cyclical changes as that shown on PGF2alpha output. The stimulation of TNFalpha resulted in a decrease in the PGE2/PGF2alpha ratio only in the late luteal stage. Furthermore, TNFalpha stimulated PGE2 secretion in stromal, but not epithelial cells. The overall results suggest that TNFalpha is a potent regulator of endometrial PGE2 secretion as well as PGF2alpha secretion during the entire period of estrous cycle, and that TNFalpha plays different roles in the regulation of secretory function of bovine endometrium at different phases of the estrous cycle.  相似文献   

20.
Bovine luteal cells from Days 4, 8, 14 and 18 of the estrous cycle were incubated for 2 h (1 x 10(5) cells/ml) in serum-free media with one or a combination of treatments [control (no hormone), prostaglandin F2 alpha (PGF), oxytocin (OT), estradiol-17 beta (E) or luteinizing hormone (LH)]. Luteal cell conditioned media were then assayed by RIA for progesterone (P), PGF, and OT. Basal secretion of PGF on Days 4, 8, 14 and 18 was 173.8 +/- 66.2, 111.1 +/- 37.8, 57.7 +/- 15.4 and 124.3 +/- 29.9 pg/ml, respectively. Basal release of OT and P was greater on Day 4 (P less than 0.01) than on Day 8, 14 and 18 (OT: 17.5 +/- 2.6 versus 5.6 +/- 0.7, 6.0 +/- 1.4 and 3.1 +/- 0.4 pg/ml; P: 138.9 +/- 19.5 versus 23.2 +/- 7.5, 35.4 +/- 6.5 and 43.6 +/- 8.1 ng/ml, respectively). Oxytocin increased (P less than 0.01) PGF release by luteal cells compared with control cultures irrespective of day of estrous cycle. Estradiol-17 beta stimulated (P less than 0.05) PGF secretion on Days 8, 14 and 18, and LH increased (P less than 0.01) PGF production only on Day 14. Prostaglandin F2 alpha, E and LH had no effect on OT release by luteal cells from any day. Luteinizing hormone alone or in combination with PGF, OT or E increased (P less than 0.01) P secretion by cells from Days 8, 14 and 18. However on Day 8, a combination of PGF + OT and PGF + E decreased (P less than 0.05) LH-stimulated P secretion. These data demonstrate that OT stimulates PGF secretion by bovine luteal cells in vitro. In addition, LH and E also stimulate PGF release but effects may vary with stage of estrous cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号