首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
30株大肠杆菌的泛基因组学特征分析   总被引:2,自引:0,他引:2  
Fu J  Qin QW 《遗传》2012,34(6):765-772
泛基因组(Pan-genome)是某一物种全部基因的总称,其中包括核心基因组(该物种所有个体中都存在的基因)和非必须基因组(只在部分个体中存在的基因,以及某个体特有的基因)。文章从泛基因组学角度比较分析了30株已经完成测序的大肠杆菌的基因、基因组成及其进化特征,结果表明核心基因只占据每株大肠杆菌全部基因数目的 50%左右,而平均每个菌株有146个特有基因,结果表明随着更多大肠杆菌菌株的基因组被测序,将会不断有新基因被发现。通过比较分析大肠杆菌不同菌株之间基因的保守性与基因的GC含量以及选择压力之间的关系,发现越保守的基因其GC含量变化范围越窄,同时在进化中受到的选择压力也越大。这些结果将有助于深入了解大肠杆菌基因组的进化特征及其基因组成的动态变化,并为预防和控制由致病性大肠杆菌引发的流行疾病提供理论依据,同时也为大规模病原菌基因组数据的分析方法提供借鉴。  相似文献   

3.
A hidden Markov model that finds genes in E. coli DNA.   总被引:12,自引:1,他引:11       下载免费PDF全文
A Krogh  I S Mian    D Haussler 《Nucleic acids research》1994,22(22):4768-4778
A hidden Markov model (HMM) has been developed to find protein coding genes in E. coli DNA using E. coli genome DNA sequence from the EcoSeq6 database maintained by Kenn Rudd. This HMM includes states that model the codons and their frequencies in E. coli genes, as well as the patterns found in the intergenic region, including repetitive extragenic palindromic sequences and the Shine-Delgarno motif. To account for potential sequencing errors and or frameshifts in raw genomic DNA sequence, it allows for the (very unlikely) possibility of insertions and deletions of individual nucleotides within a codon. The parameters of the HMM are estimated using approximately one million nucleotides of annotated DNA in EcoSeq6 and the model tested on a disjoint set of contigs containing about 325,000 nucleotides. The HMM finds the exact locations of about 80% of the known E. coli genes, and approximate locations for about 10%. It also finds several potentially new genes, and locates several places were insertion or deletion errors/and or frameshifts may be present in the contigs.  相似文献   

4.
Historically, duplicate genes have been regarded as a major source of novel genetic material. However, recent work suggests that chimeric genes formed through the fusion of pieces of different genes may also contribute to the evolution of novel functions. To compare the contribution of chimeric and duplicate genes to genome evolution, we measured their prevalence and persistence within Drosophila melanogaster. We find that ~80.4 duplicates form per million years, but most are rapidly eliminated from the genome, leaving only 4.1% to be preserved by natural selection. Chimeras form at a comparatively modest rate of ~11.4 per million years but follow a similar pattern of decay, with ultimately only 1.4% of chimeras preserved. We propose two mechanisms of chimeric gene formation, which rely entirely on local, DNA-based mutations to explain the structure and placement of the youngest chimeric genes observed. One involves imprecise excision of an unpaired duplication during large-loop mismatch repair, while the other invokes a process akin to replication slippage to form a chimeric gene in a single event. Our results paint a dynamic picture of both chimeras and duplicate genes within the genome and suggest that chimeric genes contribute substantially to genomic novelty.  相似文献   

5.
6.
T7 and E. coli share homology for replication-related gene products   总被引:2,自引:0,他引:2  
H Toh 《FEBS letters》1986,194(2):245-248
Recently, the complete nucleotide sequence of the bacteriophage T7 genome was determined and 50 genes were identified on the genome. We compared amino acid sequences of all the gene products of T7 and replication-related gene products of E. coli. As a result, we found that T7 and E. coli share homology for each pair of exonuclease, DNA primase and helix-destabilizing protein. For E. coli, these gene products are known to be involved in the process of discontinuous DNA replication. These observations suggest that T7 and E. coli have a common origin for a part of their replication systems.  相似文献   

7.
This report describes the sequencing in the Escherichia coli B genome of 36 randomly chosen regions that are present in most or all of the fully sequenced E. coli genomes. The phylogenetic relationships among E. coli strains were examined, and evidence for the horizontal gene transfer and variation in mutation rates was determined. The overall phylogenetic tree indicated that E. coli B and K-12 are the most closely related strains, with E. coli O157:H7 being more distantly related, Shigella flexneri 2a even more, and E. coli CFT073 the most distant strain. Within the B, K-12, and O157:H7 clusters, several regions supported alternative topologies. While horizontal transfer may explain these phylogenetic incongruities, faster evolution at synonymous sites along the O157:H7 lineage was also identified. Further interpretation of these results is confounded by an association among genes showing more rapid evolution and results supporting horizontal transfer. Using genes supporting the B and K-12 clusters, an estimate of the genomic mutation rate from a long-term experiment with E. coli B, and an estimate of 200 generations per year, it was estimated that B and K-12 diverged several hundred thousand years ago, while O157:H7 split off from their common ancestor about 1.5-2 million years ago.  相似文献   

8.
水稻和其他禾本科植物基因组多倍体起源的证据   总被引:5,自引:0,他引:5  
基因加倍(Gene duplication)被认为是进化的加速器。古老的基因组加倍事件已经在多个物种中被确定,包括酵母、脊椎动物以及拟南芥等。本研究发现水稻基因组同样存在全基因组加倍事件,大概发生在禾谷类作物分化之前,距今约7000万年。在水稻基因组中,共找到117个加倍区段(Duplicated block),分布在水稻的全部12条染色体,覆盖约60%的水稻基因组。在加倍区段,大约有20%的基因保留了加倍后的姊妹基因对(Duplicated pairs)。与此形成鲜明对照的是加倍区段的转录因子保留了60%的姊妹基因。禾本科植物全基因组加倍事件的确定对研究禾本科植物基因组的进化具有重要影响,暗示了多倍体化及随后的基因丢失、染色体重排等在禾谷类物种分化中扮演了重要角色。  相似文献   

9.
We have tried to approach the nature of the last common ancestor to Haemophilus influenzae and Escherichia coli and to determine how each bacterium could have diverged from this putative organism. The approach used was exhaustive analysis of the homologous proteins coded by genes present in these bacteria, using as criteria for sequence relatedness an alignment of at least 80 amino acid residues and a PAM distance (number of accepted point mutations per 100 residues separating two sequences) below 250. Evolutionarily significant similarities were found between 1,345 H. influenzae proteins (85% of the total genome) and 3,058 E. coli. proteins (75% of the total genome), many of them belonging to families of various sizes (from 666 doublets to 35 large groups of more than 10 members). Nearly all the genes found by this approach to be duplicated in both bacteria were already duplicated in their last common ancestor. This was deduced from (1) the comparison of the respective distributions of evolutionary distances between orthologs (genes separated only by speciation events) and paralogs (genes duplicated in the same genome) and (2) the analysis of the phylogenetic trees reconstructed for each family of paralogs containing at least two members belonging to each bacterium. The distributions of the different categories of homologs show a significant loss of paralogous genes in H. influenzae (reduction proportional to the genome size), of many sequences which are still present in one copy in E. coli, and of some entire gene families. Phylogenetic trees also confirmed this recent loss of paralogous genes in H. influenzae. Thus, the genome size of the last common ancestor of these two bacteria would have been close to that of present-day E. coli, and the evolution of H. influenzae toward a parasitic life led to an important decrease in its genome size by some mechanism of streamlining. During this recent evolution, the memory of the gene order present in the last common ancestor has been blurred, but a few short conserved chromosomal fragments can still be detected in present-day E. coli and H. influenzae.   相似文献   

10.
A bacterium originally described as Hafnia alvei induces diarrhea in rabbits and causes epithelial damage similar to the attachment and effacement associated with enteropathogenic Escherichia coli. Subsequent studies identified similar H. alvei-like strains that are positive for an intimin gene (eae) probe and, based on DNA relatedness, are classified as a distinct Escherichia species, Escherichia albertii. We determined sequences for multiple housekeeping genes in five E. albertii strains and compared these sequences to those of strains representing the major groups of pathogenic E. coli and Shigella. A comparison of 2,484 codon positions in 14 genes revealed that E. albertii strains differ, on average, at approximately 7.4% of the nucleotide sites from pathogenic E. coli strains and at 15.7% from Salmonella enterica serotype Typhimurium. Interestingly, E. albertii strains were found to be closely related to strains of Shigella boydii serotype 13 (Shigella B13), a distant relative of E. coli representing a divergent lineage in the genus Escherichia. Analysis of homologues of intimin (eae) revealed that the central conserved domains are similar in E. albertii and Shigella B13 and distinct from those of eae variants found in pathogenic E. coli. Sequence analysis of the cytolethal distending toxin gene cluster (cdt) also disclosed three allelic groups corresponding to E. albertii, Shigella B13, and a nontypeable isolate serologically related to S. boydii serotype 7. Based on the synonymous substitution rate, the E. albertii-Shigella B13 lineage is estimated to have split from an E. coli-like ancestor approximately 28 million years ago and formed a distinct evolutionary branch of enteric pathogens that has radiated into groups with distinct virulence properties.  相似文献   

11.
薛小莉  覃重军 《生命科学》2013,(10):978-982
大肠杆菌是基础研究最透彻、应用广泛的微生物,构建含减小甚至是最小基因组的大肠杆菌将为合成生物学的研究和应用提供理想的底盘生物。介绍了大肠杆菌最小基因组的生长与繁殖必需基因的生物信息学分析和实验鉴定,基因组敲除技术,以及删减基因组的大肠杆菌菌株的构建和应用等方面的研究进展。  相似文献   

12.
13.
14.
15.
We developed a system to monitor the transfer of heterologous DNA from a genetically manipulated strain of Saccharomyces cerevisiae to Escherichia coli. This system is based on a yeast strain that carries multiple integrated copies of a pUC-derived plasmid. The bacterial sequences are maintained in the yeast genome by selectable markers for lactose utilization. Lysates of the yeast strain were used to transform E. coli. Transfer of DNA was measured by determining the number of ampicillin-resistant E. coli clones. Our results show that transmission of the Amp(r) gene to E. coli by genetic transformation, caused by DNA released from the yeast, occurs at a very low frequency (about 50 transformants per microg of DNA) under optimal conditions (a highly competent host strain and a highly efficient transformation procedure). These results suggest that under natural conditions, spontaneous transmission of chromosomal genes from genetically modified organisms is likely to be rare.  相似文献   

16.
17.
Escherichia coli, including the closely related genus Shigella, is a highly diverse species in terms of genome structure. Comparative genomic hybridization (CGH) microarray analysis was used to compare the gene content of E. coli K-12 with the gene contents of pathogenic strains. Missing genes in a pathogen were detected on a microarray slide spotted with 4,071 open reading frames (ORFs) of W3110, a commonly used wild-type K-12 strain. For 22 strains subjected to the CGH microarray analyses 1,424 ORFs were found to be absent in at least one strain. The common backbone of the E. coli genome was estimated to contain about 2,800 ORFs. The mosaic distribution of absent regions indicated that the genomes of pathogenic strains were highly diversified because of insertions and deletions. Prophages, cell envelope genes, transporter genes, and regulator genes in the K-12 genome often were not present in pathogens. The gene contents of the strains tested were recognized as a matrix for a neighbor-joining analysis. The phylogenic tree obtained was consistent with the results of previous studies. However, unique relationships between enteroinvasive strains and Shigella, uropathogenic, and some enteropathogenic strains were suggested by the results of this study. The data demonstrated that the CGH microarray technique is useful not only for genomic comparisons but also for phylogenic analysis of E. coli at the strain level.  相似文献   

18.
Y G Wei  S J Surzycki 《Gene》1986,48(2-3):251-256
Detection and isolation of Escherichia coli clones carrying vectors with foreign DNA sequences partially homologous to specific E. coli genes is difficult because denatured DNA in the host genome can hybridize with the probe. In this paper we present a procedure which simplifies this task by using bacteriophage M13 as the cloning vector. The procedure takes advantage of the secretory properties of the phage, as well as the property of nitrocellulose membrane to bind protein and single-stranded DNA but not double-stranded DNA. This procedure is shown to be effective in identifying E. coli clones containing sequences of Chlamydomonas reinhardtii chloroplast DNA that are homologous to the rpoC gene of E. coli. We suggest that this procedure can be used generally for rapid isolation of DNA sequences that are homologous to E. coli genes.  相似文献   

19.
The enteric bacterium Escherichia coli synthesizes cobalamin (coenzyme B12) only when provided with the complex intermediate cobinamide. Three cobalamin biosynthetic genes have been cloned from Escherichia coli K-12, and their nucleotide sequences have been determined. The three genes form an operon (cob) under the control of several promoters and are induced by cobinamide, a precursor of cobalamin. The cob operon of E. coli comprises the cobU gene, encoding the bifunctional cobinamide kinase-guanylyltransferase; the cobS gene, encoding cobalamin synthetase; and the cobT gene, encoding dimethylbenzimidazole phosphoribosyltransferase. The physiological roles of these sequences were verified by the isolation of Tn10 insertion mutations in the cobS and cobT genes. All genes were named after their Salmonella typhimurium homologs and are located at the corresponding positions on the E. coli genetic map. Although the nucleotide sequences of the Salmonella cob genes and the E. coli cob genes are homologous, they are too divergent to have been derived from an operon present in their most recent common ancestor. On the basis of comparisons of G+C content, codon usage bias, dinucleotide frequencies, and patterns of synonymous and nonsynonymous substitutions, we conclude that the cob operon was introduced into the Salmonella genome from an exogenous source. The cob operon of E. coli may be related to cobalamin synthetic genes now found among non-Salmonella enteric bacteria.  相似文献   

20.
Escherichia coli strains causing urinary tract infection (UTI) are increasingly recognized as belonging to specific clones. E. coli clone O25b:H4-ST131 has recently emerged globally as a leading multi-drug resistant pathogen causing urinary tract and bloodstream infections in hospitals and the community. While most molecular studies to date examine the mechanisms conferring multi-drug resistance in E. coli ST131, relatively little is known about their virulence potential. Here we examined E. coli ST131 clinical isolates from two geographically diverse collections, one representing the major pathogenic lineages causing UTI across the United Kingdom and a second representing UTI isolates from patients presenting at two large hospitals in Australia. We determined a draft genome sequence for one representative isolate, E. coli EC958, which produced CTX-M-15 extended-spectrum β-lactamase, CMY-23 type AmpC cephalosporinase and was resistant to ciprofloxacin. Comparative genome analysis indicated that EC958 encodes virulence genes commonly associated with uropathogenic E. coli (UPEC). The genome sequence of EC958 revealed a transposon insertion in the fimB gene encoding the activator of type 1 fimbriae, an important UPEC bladder colonization factor. We identified the same fimB transposon insertion in 59% of the ST131 UK isolates, as well as 71% of ST131 isolates from Australia, suggesting this mutation is common among E. coli ST131 strains. Insertional inactivation of fimB resulted in a phenotype resembling a slower off-to-on switching for type 1 fimbriae. Type 1 fimbriae expression could still be induced in fimB-null isolates; this correlated strongly with adherence to and invasion of human bladder cells and bladder colonisation in a mouse UTI model. We conclude that E. coli ST131 is a geographically widespread, antibiotic resistant clone that has the capacity to produce numerous virulence factors associated with UTI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号