首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a kinetic model that describes a heterogeneous reaction system consisting of a solid substrate suspension for the production of D-amino acid using D-hydantoinase. As a biocatalyst, mass-produced free and whole cell enzymes were used. The heterogeneous reaction system involves dissolution of a solid substrate, enzymatic conversion of the dissolved D-form substrate, spontaneous racemization of an L-form substrate to D-form, and deactivation of the enzyme. In the case of using whole cell enzymes, transfer of the dissolved substrate and product through the cell membrane was considered. The kinetic parameters were determined from experiments, literature data, and by using Marquardt's method of nonlinear regression analysis. The model was simulated using the kinetic parameters and compared with experimental data, and a good agreement was observed between the experimental results and the simulation ones. Factors affecting the kinetics of the heterogeneous reaction system were analyzed on the basis of the kinetic model, and the efficiency of the reaction systems using free and whole cell enzymes was also compared.  相似文献   

2.
For the development of a continuous process for the production of solid D-malate from a Ca-maleate suspension by permeabilized Pseudomonas pseudoalcaligenes, it is important to understand the effect of appropriate process parameters on the stability and activity of the biocatalyst. Previously, we quantified the effect of product (D-malate2 -) concentration on both the first-order biocatalyst inactivation rate and on the biocatalytic conversion rate. The effects of the remaining process parameters (ionic strength, and substrate and Ca2 + concentration) on biocatalyst activity are reported here. At (common) ionic strengths below 2 M, biocatalyst activity was unaffected. At high substrate concentrations, inhibition occurred. Ca2+ concentration did not affect biocatalyst activity. The kinetic parameters (both for conversion and inactivation) were determined as a function of temperature by fitting the complete kinetic model, featuring substrate inhibition, competitive product inhibition and first-order irreversible biocatalyst inactivation, at different temperatures simultaneously through three extended data sets of substrate concentration versus time. Temperature affected both the conversion and inactivation parameters. The final model was used to calculate the substrate and biocatalyst costs per mmol of product in a continuous system with biocatalyst replenishment and biocatalyst recycling. Despite the effect of temperature on each kinetic parameter separately, the overall effect of temperature on the costs was found to be negligible (between 293 and 308 K). Within pertinent ranges, the sum of the substrate and biocatalyst costs per mmol of product was calculated to decrease with the influent substrate concentration and the residence time. The sum of the costs showed a minimum as a function of the influent biocatalyst concentration.  相似文献   

3.
A lipase catalysed enantioselective hydrolysis process under in situ racemization of the remaining (R)-ibuprofen ester substrate with sodium hydroxide as the catalyst was developed for the production of S-ibuprofen from (R,S)-ibuprofen ester in isooctane. Detailed investigations on parameters study indicated that 0.5 M NaOH, addition of 20% (v/v) co-solvent (dimethyl sulphoxide), operating temperature of 45 °C, and 40 mmol/L substrate gave 86% conversion and 99.4% optical purity of S-ibuprofen in dynamic kinetic resolution. Meanwhile, in common enzymatic kinetic resolution process, only 42% conversion of the racemate and 93% enantiomeric excess of the product was obtained which are of lower values as compared to dynamic kinetic resolution. The S-ibuprofen produced during each process was evaluated and approximately 50% increment in concentration of S-acid product was produced when dynamic kinetic resolution was applied into the process.  相似文献   

4.
Lipase-catalyzed kinetic resolution of racemates is a popular method for synthesis of chiral synthons. Most of these resolutions are reversible equilibrium limited reactions. For the first time, an extensive kinetic model is proposed for kinetic resolution reactions, which takes into account the full reversibility of the reaction, substrate inhibition by an acyl donor and an acyl acceptor as well as alternative substrate inhibition by each enantiomer. For this purpose, the reversible enantioselective transesterification of (R/S)-1-methoxy-2-propanol with ethyl acetate catalyzed by Candida antarctica lipase B (CAL-B) is investigated. The detailed model presented here is valid for a wide range of substrate and product concentrations. Following model discrimination and the application of Haldane equations to reduce the degree of freedom in parameter estimation, the 11 free parameters are successfully identified. All parameters are fitted to the complete data set simultaneously. Six types of independent initial rate studies provide a solid data basis for the model. The effect of changes in substrate and product concentration on reaction kinetics is discussed. The developed model is used for simulations to study the behavior of reaction kinetics in a fixed bed reactor. The typical plot of enantiomeric excess versus conversion of substrate and product is evaluated at various initial substrate mixtures. The model is validated by comparison with experimental results obtained with a fixed bed reactor, which is part of a fully automated state-of-the-art miniplant.  相似文献   

5.
Five possible kinetic mechanisms that are of relevance to the study of dye-linked dehydrogenases are examined in detail. It is shown that three of these mechanisms are linear and the remaining two are hyperbolic in double reciprocal space. These features allow three mechanisms to be distinguished by initial velocity studies alone, and product inhibition studies may sometimes but not always allow further resolution. A novel analysis of substrate inhibition is presented and finally, two relevant studies in the literature are discussed in the context of the present analysis.  相似文献   

6.
The conventional activated sludge process has been in use for many years for treating wastewater. In this paper a non-structured pseudo-homogeneous model was developed to describe the process. Volume changes as well as the external resistance between the forming flocs and substrate were considered in the model. The kinetic model together with the values of parameters were obtained from the literature. A retention time of 12 hr was found to give over 95% removal of the substrate from the wastewater. Floc diameter, retention time, fraction of biomass recycled, substrate and biomass feed concentration were found to be important factors in the overall efficiency of the treatment process.  相似文献   

7.
8.
AIMS: We aimed to systematically understand the composting processes by a comparison of microbial communities during four full-scale composting processes. METHODS AND RESULTS: Microbial communities during the four different full-scale composting processes were analysed by denaturing gradient gel electrophoresis combined with measurement of physicochemical parameters. Two composting processes utilized sewage sludge and two utilized food-waste. Comparison of the four processes indicated that the concentration of dissolved organic carbon was higher in the food-waste-composting than in the sewage-sludge-composting processes, and microbial communities varied with composting substrate. The tendency for different microbes to appear in the composting process with different concentrations of dissolved organic carbon agreed with a previous study that showed that microbial succession occurred with a decrease in dissolved organic carbon in a laboratory-scale food-waste-composting process. CONCLUSIONS: Our results suggested that the main factor affecting microbial communities in the composting process is the concentration of dissolved organic materials. SIGNIFICANCE AND IMPACT OF THE STUDY: In addition to studying microbial communities involved in composting, this research is also the first to study composting mechanisms using molecular methods. The results of our studies may be helpful in the design and management of composting processes.  相似文献   

9.
Design considerations for enzymatic hydrolysis of lignocellulosic biomass in two and three continuous stirred tank reactors (CSTRs) in series with distributed feeding of substrate and enzyme, followed by a series of CSTRs, are discussed. A previously developed, fitted, and validated kinetic model is extended to accommodate distributed feeding and used along with the micromixing limiting situations of macrofluid and microfluid to describe the reaction system. The capabilities of the reaction system proposed are explored for a range of cumulative substrate concentration from 5 to 20% w/w (dry basis). Continuous distributed feeding does not show advantages in terms of cellulose conversion when compared with the operation where an equivalent mass of substrate is added at the first reactor of the series, but the potential to increase substrate concentration beyond the concentrations that can be handled in conventional CSTRs, and therefore, the volumetric productivity of reactors, is evident.  相似文献   

10.
Microbial epoxide hydrolases for preparative biotransformations   总被引:10,自引:0,他引:10  
Epoxide hydrolases from microbial sources are highly versatile biocatalysts for the asymmetric hydrolysis of epoxides on a preparative scale. Besides kinetic resolution, which furnishes the corresponding vicinal diol and remaining non-hydrolysed epoxide in nonracemic form, enantioconvergent processes are possible: these are highly attractive as they lead to the formation of a single enantiomeric diol from a racemic oxirane. The data accumulated over recent years reveal a common picture of the substrate structure selectivity pattern of microbial epoxide hydrolases and indicate that substrates of various structural types can be selectively hydrolysed with enzymes from certain microbial sources.  相似文献   

11.
Application of polyhydroxyalkanoates (PHAs) and related biodegradable polymers has gained momentum in various areas of biotechnology. A promising application that started appearing in the past decade is the use of PHAs as the solid substrate for denitrification of water and wastewater. This type of denitrification, termed here "solid-phase denitrification", has several advantages over the conventional system supplemented with liquid organic substrate. PHAs serve not only as constant sources of reducing power for denitrification but also as solid matrices favorable for development of microbial films. In addition, in contrast to conventional processes, the use of PHAs has no potential risk of release of dissolved organic carbon with the resultant deterioration of effluent water quality. If the production cost of PHAs can be brought down, its application to the denitrification process will become economically more promising. A number of PHA-degrading denitrifying bacteria have been isolated and characterized from activated sludge and continuous flow-bed reactors for denitrification with PHAs. Most of these isolates have been assigned phylogenetically to members of beta-Proteobacteria, especially those of the family Comamonadaceae. The metabolic and regulatory relationships between PHA degradation and denitrification, and the interactive relationship between PHA-degrading cells and the solid surface structure are important subjects awaiting future studies, which would provide a new insight into our comprehensive understanding of the solid-phase denitrification process.  相似文献   

12.
For a better understanding of the simulation, optimization, and process control in cell cultures, good kinetic models are necessary for large scale plant cell culture. In this paper, the systematic kinetics of taxol production by Taxus media cell suspension cultures in a stirred 15-L bioreactor under substrate-sufficient conditions and the absence of inducer intervention were studied. A kinetic model of cell growth was established by logistic equation, and kinetic unstructured models of substrate consumption, product synthesis and rheological behavior were constituted, which incorporated energy spilling. These models were verified by comparing the simulation results with those obtained experimentally. These results showed that energy spilling was a key factor that must be considered in constructing unstructured kinetic models of Taxus media cell suspension cultures in a stirred bioreactor under substrate-sufficient conditions. Besides, an optimized operation measure of decreasing energy spilling was proposed. An increase of 17.64% in cell biomass and 14.88% in taxol concentration were obtained when the strategy of limiting added carbon several times was experimentally implemented in a 15-L bioreactor. Results demonstrated that these established models should be helpful in the process prediction and operation optimization to guide the production and amplification of Taxus media cell suspension cultures in a bioreactor.  相似文献   

13.
The reaction kinetics for phenol biodegradation at low substrate concentrations can be estimated based on the analysis of changes in the dissolved oxygen concentration in the bulk liquid during biodegradation. The measured oxygen concentration changes with an interesting behavior as biodegradation proceeds. The oxygen concentration in the bulk liquid decreases rapidly in the early stages of degradation and subsequently decreases linearly and then rapidly recovers to the initial saturated level. Taking into account the oxygen transfer rate between gas and liquid phases and oxygen consumption rate by microbes, the change in the dissolved oxygen concentration can be simulated with an unsteady state mass balance equation and three kinetic models for the rate of phenol metabolism: a substrate-inhibited model; a zero-order model; and a combined model. In the combined model, it is assumed that, at phenol concentrations above 10 mg/L, the degradation rate is expressed by a substrate-inhibited model; whereas at concentrations below 10 mg/L the zero-order model is applied. It was found that the characteristics of the change in the dissolved oxygen concentration, especially the rapid increase at the end of degradation, can only be described by the combined kinetic model. This result suggests that conventional Haldane-type kinetics would be unsuitable for estimating the phenol consumption rate at low phenol concentrations, in particular, at concentrations less than 10 mg/L. (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
Membrane bioreactor (MBR) is a promising alternative to conventional wastewater treatment methods. However this process is still under-used due to its high running costs. Its main power requirement comes from aeration, which is used to supply dissolved oxygen to the micro-organisms and to maintain the solids in suspension. In addition, in submerged MBRs, aeration is used for membrane cleaning. A complex matrix links the biomass characteristics, the aeration and the oxygen transfer. These parameters can impact on each other and/or delete one another effect. In order to understand the phenomena occurring in MBRs, similar aerobic biological processes, such as fermentation, mineral industry and slurry, were investigated. This review discusses the interrelations of the biomass characteristics (solids concentration, particle size and viscosity), the aeration intensity and the oxygen transfer in MBRs.  相似文献   

15.
Extended monod kinetics for substrate, product, and cell inhibition   总被引:8,自引:0,他引:8  
A generalized form of Monod kinetics is proposed to account for all kinds of product, cell, and substrate inhibition. This model assumes that there exists a critical inhibitor concentration above which cells cannot grow, and that the constants of the Monod equation are functions of this limiting inhibitor concentration. Methods for evaluating the constants of this rate form are presented. Finally the proposed kinetic form is compared with the available data in the literature, which unfortunately is very sparse. In all cases, this equation form fitted the data very well.  相似文献   

16.
When a racemic mixture is fully consumed the products may still be enantiomerically enriched. In particular, the regiodivergent kinetic resolution is a process in which a single chiral catalyst or reagent reacts with a racemic substrate to form regioisomers possessing an opposite configuration on the newly-formed stereogenic centers. This review reports the major advances in the field of the copper-catalyzed regiodivergent and stereodivergent kinetic resolution of allylic substrates with organometallic reagents. The chiral recognition matching phenomena found with particular allylic substrates with the absolute configuration of the chiral catalyst allows in some cases an excellent control of the regio- and stereoselectivity, sheding some light on the so-called "black-box" mechanism of a copper-catalyzed asymmetric allylic alkylation.  相似文献   

17.
18.
19.
Fluorescence flow cytometry was used to measure the internalization of the fluorescent ligand N-formyl-nle-leu-phe-nle-tyr-lys-fluorescein by human neutrophils. The internalization process was monitored by the accessibility of the receptor-bound fluorescent ligand to quenching following a change in the pH of the extracellular medium from 7.4 to 3.0. In such a pH change, extracellular ligand or fluorescein are quenched immediately (excitation 488 nm). In contrast, intracellular fluorescein (derived from fluorescein diacetate) or intracellular ligand are quenched with half-times of approximately 20 or approximately 40 sec, respectively, at 37 degrees C. The fraction of internalized ligand is calculated by resolving the fast and slow components of the quenching process. Temporal resolution of the internalization process in this system depends upon two factors. We have previously shown that it is possible to examine essentially continuously the kinetics of ligand binding in the nM concentration range without removing the free ligand (Sklar LA, Finney DA, Cytometry 3:161, 1982). We have now modified a Becton Dickinson FACS IV sample head assembly to permit direct addition of reagents into the cell suspension while on-line. This enables us to change the suspension pH and evaluate internalization with a time resolution of a few seconds. We observe that internalized ligand can be detected within 1 min and that the rate is proportional to the number of receptors occupied. The rate is essentially linear over the first few minutes and approximately 60% of the receptor-bound ligand is internalized after 3 min.  相似文献   

20.
Inulin, a polyfruction, is found as the reserve carbohydrate in the roots and tubers of various plants (i.e. Jerusalem artichoke, chicory, and dahlia tubers). The beta-fructofuranosidase (inulase) from the yeast Kluyveromyces fragilis is of interest because of its industrial potential in fructose syrup and alcohol production from inulin containing plants. We have found that the inulase of K. fragilis can be immobilized in the yeast cells by glutaraldehyde treatment. These cells are resistant to physical and enzymatic destruction. Although the exact nature of the immobilization is not fully understood, the kinetic parameters of the immobilized enzyme are similar to those of the soluble enzyme. No reduction of enzyme activity was observed after glutaraldehyde treatment and glutaraldehyde concentration did not affect enzyme activity. A 96% hydrolysis of dahlia inulin was achieved in 10.5 h with a 9.5% (w/v) fixed enzyme suspension. A Jerusalem artichoke extract containing 16.8%polyfructan was completely hydrolyzed in 3.5 h with a 0.24% (w/v)fixed enzyme suspension. This is a time frame feasible for industrial consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号