首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants of Ceratonia siliqua L. (carob tree) were subjected to a slow cycle of soil water depletion in summer and in winter. Recently mature and fully turgid leaves were squeezed in a pressure chamber in order to analyse changes in the components of water potential related to the acclimation to drought. Mathematical expressions were fitted to the primary data in order to calculate the elasticity modulus and the dependence of turgor pressure on relative osmotic water content. Osmotic and water potentials decreased significantly in leaves acclimated during the summer (about 0.7 and 0.9 MPa decrease, respectively) whereas in winter the elastic properties of the wall had changed: modulus of the non-stressed leaves was 26 MPa compared to 7.5 MPa in leaves subjected to drought stress. The results indicate that Ceratonia leaves can, to some extent, maintain turgor under situations of soil drought, using different strategies according to the season.  相似文献   

2.
The effect of decreases in turgor on chloroplast activity was studied by measuring the photochemical activity of intact sunflower (Helianthus annuus L. cv. Russian Mammoth) leaves having low water potentials. Leaf turgor, calculated from leaf water potential and osmotic potential, was found to be affected by the dilution of cell contents by water in the cell walls, when osmotic potentials were measured with a thermocouple psychrometer. After the correction of measurements of leaf osmotic potential, both the thermocouple psychrometer and a pressure chamber indicated that turgor became zero in sunflower leaves at leaf water potentials of −10 bars. Since most of the loss in photochemical activity occurred at water potentials below −10 bars, it was concluded that turgor had little effect on the photochemical activity of the leaves.  相似文献   

3.
Growth rates of seasonal leaf flushes of ‘Valencia’orange [Citrus sinensis (L.) Osbeck] were measured and waterrelations characteristics of young (new) and over-wintered (old)citrus leaves were compared. New flush leaves had lower specificleaf weights and lower midday leaf water potentials than comparablyexposed old leaves. Spring and summer flush new leaves had higherosmotic potentials than old leaves. These differences becamenon-significant as the new leaves matured. During summer conditions,water-stressed new leaves reached zero turgor and stomatal conductancealso began to decrease in them at higher leaf water potentialsthan in old leaves. Old leaves were capable of maintaining openstomata at lower leaf water potentials. Opened flowers and newflush leaves lost more water, on a dry weight basis, than flowerbuds, fruit or mature leaves. The results illustrate differencesin leaf water potential and stomatal conductance which can beattributed to the maintenance of leaf turgor by decreases inleaf osmotic potentials as leaves mature. These changes in citrusleaf water relations are especially important since water stressresulting from high water loss rates of new tissues could reduceflowering and fruit set. Citrus sinensis (L.) Osbeck, orange, Citrus paradisi Macf., grapefruit, growth rate, leaf water relations, osmotic potential, water potential, stomatal conductance  相似文献   

4.
The changes in the internal water relations of soybean (Glycinemax L. Merr.) leaves during vegetative and reproductive growthwere studied by following the changes in the pressure-volumecurves of soybean leaves. The results demonstrate that soybeanleaves undergo a change in their osmotic properties which coincideswith the onset of active reproductive growth and is not inducedby water stress. The observed osmotic changes resulted in anincrease in the leaf relative water content at any given bulkleaf water potential. The volume of leaf water loss needed toreduce turgor potential to zero did not change following thischange in osmotic properties. The degree of turgor maintenanceafter the change in osmotic properties depended on the abilityto maintain adequate leaf relative water content. The observedchanges in bulk osmotic potential of the soybean leaves wouldcontribute to increased leaf-soil water potential gradientsand therefore to improved ability to extract the remaining soilwater as the season progressed.  相似文献   

5.
Abstract. An equation is derived relating tissue water potential to relative water content. This equation may be used to lit a single curve to a set of data such as the standard pressure volume measurements made with a pressure chamber. From such a single curve fitting operation, estimates of the parameters involved may be found, and this allows calculation of such quantities as bulk modulus of elasticity, osmotic potential at full turgor and at the turgor loss point, pressure potential, and the weight of symplastic water. The method of analysis has several advantages, which are illustrated using pressure chamber data obtained from leaves of Lombardy poplar, Populus nigra L. 'italica'.  相似文献   

6.
Parker, W. C. and Pallardy, S. G. 1987. The influence of resaturationmethod and tissue type on pressure-volume analysis of Quercusalba L. seedlings.—J. exp. Bot. 38: 535–549. The effect of resaturation method and amount of woody tissueon pressure-volume analysis was investigated using materialcollected from Quercus alba L. seedlings. Leaves excised fromwell-irrigated, intact plants had lower initial xylem pressurepotentials than did leaves resaturated by two artificial methods.Differential capacity for tissue rehydration among the threemethods was linked to shifts in the relative position of pressure-volumecurves, and differences in the osmotic potential and relativewater content at which turgor loss occurred were observed. Pressure-volumecurves from leaves resaturated by all three methods contained‘plateaus’ near full turgor, where xylem pressurepotential declined only slightly with relative water content.These plateaus were apparently associated with apoplastic waterthat accumulated in intercellular spaces of the leaf near fullturgidity, and acted to buffer changes in leaf xylem pressurepotential as tissues dehydrated. The presence of this waterhas implications for derived water relations parameter estimates.Pressure-volume curves for excised shoots also exhibited plateaus,but the relationship between xylem pressure potential and relativewater content over this region was steeper than was found forleaves. Shoot osmotic potentials were somewhat lower than thosefor leaves. The slope of the linear portion of shoot pressure-volumecurves was more shallow than for single leaves, a response associatedwith comparatively lower values of the symplastic water fractionin shoots. Key words: Pressure-volume curve, tissue-water relations, elasticity  相似文献   

7.
Phaseolus vulgaris plants with expanding primary leaves weresubjected to dark-light or light-dark transition at a root temperatureof 25 °C, or to root cooling to 10 °C. Illuminationor darkening caused rapid changes in water flux through theplants and in epidermal turgor pressure when analysed by pressureprobe. However, these were not concurrent with variations inbulk leaf water potential and turgor pressure as determinedby the pressure chamber method. In addition, the turgor pressureof epidermis measured with the pressure probe was invariably0.05 to 0.15 MPa lower than that measured in bulk tissue withthe pressure chamber. Cooling roots to 10°C induced waterstress and wilting. Both techniques indicated a decrease ofturgor pressure, but a 20-30 min lag was observed with the pressurechamber. Due to stomatal closure and decreased transpiration,root-cooled plants regained cell turgor after 5-7 h of cooling,but bulk tissue and epidermal turgor (as well as leaf growthrate) remained significantly lower than control levels. Thesefindings indicate that changes in turgor pressure as the resultof hydraulic signalling are sufficient to explain the rapidchanges in growth rate following illumination or cooling reportedin earlier work (Sattin et al 1990). They also indicate thatdata obtained by use of the pressure chamber must be treatedwith caution. Key words: Phaseolus vulgaris, expansion growth, water relations, hydraulic signalling, pressure probe, pressure chamber  相似文献   

8.
VOS  J.; OYARZN  P. J. 《Annals of botany》1988,62(5):449-454
Water relations characteristics of potato (Solanum tuberosumL. cv. Bintje) leaves were determined from pressure—volumeanalysis using a pressure chamber. Turgor was 077 MPa and thebulk volumetric modulus of elasticity 81 MPa at full turgidity;turgor loss occurred when water potential () had declined to–087 MPa at a relative water content (RWC) of 0912;the apoplastic water fraction (A) was 0235. As is usually found,there was a linear relation between 1/ and RWC beyond turgorloss. This finding supports the assumptions of the constancyof A during leaf dehydration. Beyond turgor loss the difference between and [measured afterfreezing and thawing (d)] was about 01 MPa. This differencedid not increase as the leaf water content decreased. This resultcontradicts the constancy of A. It was concluded from calculations with a simple model of leafdehydration that analysis of the relation between and d providesmore insight in the changes in the apoplastic fraction thanthe relation between 1/ and RWC. Research on the size of theapoplastic fraction and its changes with water potential wouldcomplement current understanding of leaf water relations. Solanum tuberosum, L., water potential, pressure chamber, osmotic potential, pressure potential, relative water content, apoplast, symplast  相似文献   

9.
The effects of leaf age on water relations, organic solute, and total ion accumulation were studied in mature and immature leaves of two-year-old grapevines (Vitis vinifera L., cv. Savatiano) grown under water stress conditions. Osmotic potential at full turgor decreased significantly in leaves of stressed plants, irrespective of leaf age, indicating the occurrence of an active osmotic adjustment. The apoplastic water fraction (A) increased during leaf ontogeny in both control and stressed plants. However, the values of A were lower in stressed plants. Starch concentration decreased significantly in both mature and immature leaves during the drought cycle, while the relative proportion of monosaccharides and sucrose was markedly different in immature leaves compared to mature. The accumulation of total inorganic ions, induced by drought, was also age dependent, increasing significantly with leaf age, while there were no significant differences in total amino acids content. Inorganic ions and carbohydrates seem to be the major component of osmotic adjustment in mature and immature grapevine leaves, respectively.  相似文献   

10.
Seasonal and diurnal variation and rehydration effects of pressure-volume parameters in Pseudotsuga menziesii (Mirb.) Franco from a plantation in central Pennsylvania, USA, were evaluated during May-September, 1989. Predawn elastic modulus was lowest in overwintering and newly expanded shoots in May and June, respectively, whereas predawn osmotic potentials at full and zero turgor were lowest in May and in early September, following an August drought. Seasonal variation in predawn relative water content at zero turgor was highly correlated with increases and decreases in elastic modulus and osmotic potential. Diurnal osmotic adjustment resulted in nearly constant turgor pressure, despite decreases in bulk shoot water potential. Elastic modulus decreased diurnally on 1 August and increased on 3 September. Decreases in osmotic potential and/or elastic modulus on 24 June and 1 August lowered the relative water content at zero turgor. Plateaus in pressure-volume data caused by excess apoplastic water, were present in 67% of naturally rehydrated shoots and in all of the shoots artificially rehydrated for 3, 6, 12 and 24 h, and they increased in volume with rehydration time. Plateaus represented 80–95% of the excess apoplastic water lost during pressure-volume analysis. Correcting for plateaus via linear regression had no significant effect on osmotic potential at full turgor; however, uncorrected elastic modulus and relative water content at zero turgor were often significantly lower than the plateau-corrected values, particularly in artificially rehydrated shoots. Plateau-corrected osmotic potential at full turgor and osmotic potential at zero turgor were significantly higher in most artificially rehydrated shoots than in those naturally rehydrated as the result of loss of symplastic solutes. Corrected elastic modulus decreased following 12 and 24 h of rehydration and corrected relative water content at zero turgor increased in as little as 3 h of rehydration. These results indicate that seasonal and diurnal patterns of tissue-water parameters in Pseudotsuga menziesii vary with plant phenology and drought conditions, and that the length of rehydration period is an important consideration for pressure-volume studies.  相似文献   

11.
The quantitative relationship between turgor and the pressureexerted by the inner tissues (cortex, vascular tissue, and pith)on the peripheral cell walls (longitudinal tissue pressure)was investigated in hypocotyls of sunflower seedlings (Helianthusannuus L.) In etiolated hypocotyls cell turgor pressures, asmeasured with the pressure probe, were in the range 0·38to 0·55 MPa with an average of 0·48 MPa. In irradiatedhypocotyls turgor pressures varied from 0·40 to 0·57MPa with a, mean at 0·49 MPa. The pressure exerted bythe inner tissues on the outer walls was estimated by incubatingpeeled sections in a series of osmotic test solutions (polyethyleneglycol 8000). The length change was measured with a transducer.In both etiolated and irradiated hypocotyls an external osmoticpressure of 0·5 MPa was required to inhibit elongationof the inner tissues, i.e. the average cell turgor and the longitudinaltissue pressure are very similar quantities. The results indicatethat the turgor of the inner tissues is displaced to and borneby the thick, growth-limiting peripheral cell walls of the hypocotyl. Key words: Helianthus annuus, hypocotyl growth, tissue pressure, turgor pressure, wall stress  相似文献   

12.
The portable instrument described by Heathcote, Etherington,and Woodward (1979) for the non-destructive measurement of turgorpressure was evaluated in Helianthus annuus and Helianthus paradoxus.A good correlation was obtained between turgor pressure measuredwith the instrument and turgor pressure estimated by the pressure-volumetechnique for individual leaves allowed to dry after excision;however, variation in both the intercept and slope of the relationshipoccurred between leaves. Consequently, there was no correlationbetween the output of the instrument for individual leaves andthe turgor pressure of the same leaves estimated by conventionalmethods. Moreover, for a given leaf, the instrument had onlya limited ability to detect temporal variation in turgor pressurewhen compared with turgor pressure calculated from measuredvalues of leaf water potential and leaf osmotic potential. Theinstrument's output was influenced by its proximity to majorveins and by leaf thickness. We conclude that variability inleaf thickness and the presence of large veins limits its usefulnessfor measurement of turgor pressure in Helianthus. Key words: Leaf thickness, Turgormeter, Turgor pressure, Helianthus  相似文献   

13.
TURNER  L. B. 《Annals of botany》1990,66(6):721-727
White clover plants were subjected to water stress followingthe cessation of watering. As a water deficit developed, waterand osmotic potentials were measured in stolon tips, leavesfrom the stolon tip and leaves from the plant crown. Pressurepotentials were calculated. Pressure potential was maintainedin stolon tips even when water potential fell to around –2·0MPa. In contrast, pressure potential in leaves fell rapidlyas water stress developed. Total amino acid and potassium levels were largely unaffectedin both stolon tips and leaves. Water-soluble carbohydratesand proline accumulated during water stress. The increase inproline level in leaves did not follow the same pattern as thatin stolon tips, although toward the end of the water stressperiod the level had increased by a similar extent in both partsof the plant. Additionally, pressure potential and osmotic potentialappeared to be significantly related to proline content in stolontips. No such relationship was found for leaves. The role ofproline in osmotic adjustment is discussed. Trifolium repens L. cv. Olwen, white clover, water stress, osmotic adjustment, proline  相似文献   

14.
The leaf elongation rate and osmotic pressure at full turgorof wheat (Triticum aestivum L.) and lupin (Lupinus cosentiniiGuss.) were measured in well watered plants, in plants thatwere allowed to dry the soil slowly over 7 d, and in plantsin which the water potential of the leaf xylem was maintainedhigh by applying pressure to the roots during the drying cycle.Maintenance of high xylem water potentials failed to preventa reduction in the rate of leaf elongation as the soil dried,while the osmotic pressure at full turgor and the degree ofosmotic adjustment increased as the soil water content decreased.The rate of leaf elongation was reduced more and the degreeof osmotic adjustment was higher in leaves with high xylem waterpotentials than in those in which leaf xylem potentials wereallowed to decrease as soil water content decreased. Osmoticadjustment was linearly correlated with the reduction in leafelongation rate in both wheat and lupin. Key words: Osmotic adjustment, leaf elongation, turgor regulation  相似文献   

15.
Relative water content (RWC) and water potential as measuredwith the pressure chamber were evaluated as indicators of waterstatus of tissue-cultured apple shoots and plantlets (shootswith roots). During the hydration required for RWC measurement,both water content and water potential exhibited the same hydrationkinetics, indicating that 10 h were required for full hydration.Once full hydration was reached, shoot mass remained relativelyconstant. Moisture release characteristics were also constructedand the associated shoot and plantlet water relations parameterswere estimated. Underin vitroconditions, both shoot and plantletwater potential were similar to the water potential of the culturemedium in which they were grown. The moisture release characteristicof shoots and plantlets was consistent with that expected fortypical plant tissues, and gave estimates of maximum modulusof elasticity (6.201.14 MPa), osmotic potential at saturation(–0.85 0.10 MPa), osmotic potential at zero turgor (–1.16 0.14 MPa) and RWC at zero turgor (78 2%) which were similarto values in the literature. Higher values of leaf conductanceand RWC were found in shoots and plantlets placed at 95% RH(21 C) compared to those at 90% RH. Plantlets had higher valuesof both conductance and RWC compared to shoots, suggesting thatinvitroroots are functional in water uptake. Relative water contentwas related to measures of physiological activity such as leafconductance, and it was also easier to measure than water potential.Relative water content is suggested as a sound index of waterstatus in tissue culture plants. Key words: Conductance, microculture, water status, water stress.  相似文献   

16.
The relationship between cell elongation, change in turgor andcell osmotic pressure was investigated in the sub-apical regionof hypocotyls of developing sunflower seedlings (Helianthusannuus L.) that were grown in continuous white light. Cell turgorwas measured with the pressure probe. The same hypocotyl sectionswere used for determination of osmotic pressure of the tissuesap. Acceleration of cell elongation during the early phaseof growth was accompanied by a 25% decrease in both turgor andosmotic pressure. During the linear phase of growth both pressuresremained largely constant. The difference between turgor andosmotic pressure (water potential) was –0.10 to –0.13MPa. Excision of one cotyledon had no effect on growth, turgorand osmotic pressure. However, after removal of both cotyledonscell elongation ceased and a substantial decrease in both pressureswas measured. In addition, we determined the longitudinal tissuepressure in seedlings from which one or both cotyledons hadbeen removed. Tissue pressure and turgor were very similar quantitiesunder all experimental conditions. Our results demonstrate thatturgor and cell osmotic pressure show a parallel change duringdevelopment of the stem. Cessation of cell elongation afterremoval of the cotyledons is attributable to a decrease in turgor(tissue) pressure, which provides the driving force for growthin the hypocotyl of the intact plant. Key words: Cell elongation, Helianthus annuus, osmotic pressure, tissue pressure, turgor  相似文献   

17.
Goicoechea  N.  Antolín  M.C.  Sánchez-Díaz  M. 《Plant and Soil》1997,192(2):261-268
The objective of this research was to study the effect of drought on nutrient content and leaf water status in alfalfa (Medicago sativa L. cv Aragón) plants inoculated with a mycorrhizal fungus and/or Rhizobium compared with noninoculated ones. The four treatments were: a) plants inoculated with Glomus fasciculatum and Rhizobium meliloti 102 F51 strain, (MR); b) plants inoculated with R. meliloti only (R); c) plants with G. fasciculatum only (M); and d) noninoculated plants (N). Nonmycorrhizal plants were supplemented with phosphorus and nonnodulated ones with nitrogen to achieve similar size and nutrient content in all treatments. Plants were drought stressed using two cycles of moisture stress and recovery. The components of total leaf water potential (osmotic and pressure potentials at full turgor), percentage of apoplastic water volume and the bulk modulus of elasticity of leaf tissue were determined. Macronutrient (N, P, K, Ca, S and Mg) and micronutrient (Co, Mo, Zn, Mn, Cu, Na, Fe and B) content per plant were also measured. Leaves of N and R plants had decreased osmotic potentials and increased pressure potentials at full turgor, with no changes either in the bulk modulus of elasticity or the percentage of apoplastic water upon drought conditions. By contrast, M and MR leaves did not vary in osmotic and turgor potentials under drought stress but had increased apoplastic water volume and cell elasticity (lowering bulk modulus). Drought stress decreased nutrient content of leaves and roots of noninoculated plants. R plants showed a decrease in nutrient content of leaves but maintained some micronutrients in roots. Leaves of M plants were similar in content of nutrients to N plants. However, roots of M and MR plants had significantly lower nutrient content. Results indicate an enhancement of nutrient content in mycorrhizal alfalfa plants during drought that affected leaf water relations during drought stress.  相似文献   

18.
A field experiment was conducted with a non-irrigated waterstress treatment and an irrigated control using four sorghum(Sorghum bicolor L. Moench) cultivars. We investigated the effectsof water deficits on leaf water relations, osmotic adjustment,stomatal conductance, cuticular conductance, cell membrane stability(CMS) measured by the polyethylene glycol (PEG) test, epicuticularwax load (EWL), cytoplasmic lipid content, solute concentrationin cell sap, and growth. Osmotic adjustment was observed under water deficit conditions.Lower osmotic potential enabled plants to maintain turgor anddecreased the sensitivity of turgor-dependent processes. Sugarand K were identified as the major solutes contributing to osmoticpotential in sorghum. Sugar and K concentrations in cell sapincreased by 37·4% and 27%, respectively, under waterdeficit conditions in favour of decreasing osmotic potential.Stomatal conductance and cuticular conductance were lower inthe non-irrigated plants. A wide range in CMS among four cultivarswas observed. CMS increased with increasing water deficits.EWL increased on leaves of water deficient plants and was positivelycorrelated with cuticular conductance and CMS. Membrane phospholipidcontent increased in water-stressed plants. CMS as measured by the PEG test, was influenced by EWL, cuticularthickness, and osmotic concentration of leaf tissues. The cultivarswhich maintained higher CMS, higher EWL, lower cuticular conductance,higher turgor and higher osmotic adjustment under water deficitconditions were identified as drought tolerant. Key words: Sorghum bicolor, cell membrane stability, leaf water relationsosmotic adjustment, water stress  相似文献   

19.
Indian mustard (Brassica juncea(L) Czernjacw) maintains higherleaf turgor than canola (B. napusL.) under water deficits andthis is related to the greater yield of mustard under theseconditions. The work reported in this paper was designed tostudy the way mustard maintains this turgor advantage. It wasbased on three field experiments that each used at least twocultivars or lines of each species. The leaf water potentialat which leaves reached zero turgor was consistently lower inmustard than in canola (up to 1.1 MPa lower). This differencearose from a greater rate of decline in leaf osmotic potentialwith declining water potential in mustard rather than from anydifference in the osmotic potential at full turgor. Calculationsof solute accumulation showed that mustard had a greater capacityto osmoregulate than canola, with this capacity being the basisfor its advantage in turgor maintenance. Other differences inplant water relations were consistent with the differences inosmoregulation, with the predicted relative water content ofleaves at an osmotic potential of -2.5 MPa being 0.43 for canolaand 0.61 for mustard. Mustard's greater capacity to accumulatesolutes is concluded to be a major factor in its greater yieldunder water deficits. Brassica napusL.; Brassica juncea(L) Czernjacw; Indian mustard; canola; water deficit; plant water relations; osmoregulation; osmotic adjustment; turgor  相似文献   

20.
ACOCK  B.; NICHOLS  R. 《Annals of botany》1979,44(2):221-230
Carnation flower stems were stood in water or sucrose solutionand changes in water content, water and osmotic potential, turgorpressure and solutes (sugars, nitrogen, phosphorus, potassium)of petals were measured throughout the flower life. In bothtreatments the petals had a higher specific water content atincipient wilting than when the flowers were first cut. In water,turgor pressure decreased rapidly after the seventh day becauseof a decrease in tissue solute content. In sucrose solution,loss, of solutes was delayed probably because the sugar provideda respiratory substrate to maintain cell membrane integrity.In these cells, sugars and water accumulated causing decreasesin water potential and osmotic potential. Solutes and waterwere lost at about day 15 and turgor pressure decreased. Therewas some evidence that from about day 11 cells were so gorgedwith sugars that they burst when they were placed in water duringthe adjustment of water content prior to water potential measurements. Most of the initial petal osmotic energy content could be accountedfor by sugar, potassium, and anions associated with potassium,but in water, as the petals aged and sugar content decreased,so the potassium ions contributed a larger proportion of theosmotic energy; with stems in sucrose, the endogenous sugarcontent (reducing sugars plus sucrose) contributed an increasingproportion of the total osmotic energy. Dianthus caryophyllus, carnation, flowers, water relations, senescence  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号