首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
脂质过氧化对人红细胞膜脂流动性的影响   总被引:20,自引:3,他引:17  
研究枯稀过氧化氢/高铁血红素体系所产生的烷基过氧自由基对红细胞的损伤。测定了脂质过氧化的产物——丙二脂的生成,并证明阿魏酸钠对脂质过氧化的抑制。荧光偏振的结果指出,膜脂过氧化以后降低了膜脂的流动性。人红细胞用5DSA和16DSA标记并用ESR检测膜脂流动性,结果表明,序参数S几乎没有发生变化,旋转相关时间τ值的增加证明膜脂过氧化以后,疏水尾部的物理状态发生了改变。经脂质过氧化以后,红细胞膜中的不饱和脂防酸的减少,可能是降低膜脂流动性的原因之一。  相似文献   

2.
Mobilization and aggregation of intramembrane particles (IMPs) are physiological events observed in various cells. In erythrocyte membranes, aggregation of IMPs can be induced by the exposure of partially desprectrinized erythrocyte membranes to acidic pH. We investigated the association between IMPs aggregation, protein mobility, and membrane fluidity in erythrocyte membranes of healthy controls and Duchenne muscular dystrophy (DMD) patients by using electron spin resonance and specific spin labels for membrane proteins and lipids. In erythrocyte membranes of control subjects, the partial spectrin removal induced a decreased segmental motion of protein spin label indicating an increase of protein-protein interactions. Stearic acid spin labels 5- and 16-(N-oxyl-4,4'-dimethyloxazolidine) showed that the treatment induces an increase of membrane fluidity. In DMD patients, both treated and untreated erythrocyte membranes showed changes of membrane fluidity when compared to those of the controls. Our results suggest that defects in the interactions between skeletal proteins and/or between membrane and skeleton components may contribute to the alterations of erythrocyte membranes in DMD.  相似文献   

3.
The lipid phase of transverse tubule membrane was probed with a variety of fatty acid spin labels. The motion of the probe increased as the distance between the spin label and polar head group increased, in agreement with results reported in other membranes. The value of the order parameter at 37 degrees C for a fatty acid spin label containing the label attached to its fifth carbon atom was closer to values reported for bacterial membranes than to the lower values reported for other mammalian membranes. Order parameters for spin labels containing the label nearer to the center of the bilayer were closer to the values reported in other mammalian membranes than to values reported for bacterial membranes. These results indicate that the lipid segments in the vicinity of the polar head group, and less so those near the center of the bilayer, are motionally more restricted in transverse tubules than in other mammalian membranes. In particular, the lipid phase of the transverse tubule membrane is less fluid than that of the sarcoplasmic reticulum membrane. A possible role of the high cholesterol content of transverse tubules in generating the lower fluidity of its lipid phase is discussed.  相似文献   

4.
The interaction of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) with erythrocyte membranes from patients with Huntington disease and normal controls has been studied by electron spin resonance. GABA affects the physical state of erythrocyte membrane proteins in control and Huntington disease differently. In addition, after exposure of spin-labeled Huntington disease erythrocyte membranes to 0.1 mM GABA, the relevant electron spin resonance parameters reflecting the physical state of membrane proteins are indistinguishable from those of untreated control membranes. These findings support the concept that this disease is associated with a generalized membrane defect.  相似文献   

5.
Spin labeling methods were used to study the structure and dynamic properties of dimyristoylphosphatidylcholine (DMPC) membranes as a function of temperature and the mole fraction of polar carotenoids. The results in fluid phase membranes are as follows: (1) Dihydroxycarotenoids, zeaxanthin and violaxanthin, increase order, decrease motional freedom and decrease the flexibility gradient of alkyl chains of lipids, as was shown with stearic acid spin labels. The activation energy of rotational diffusion of the 16-doxylstearic acid spin label is about 35% less in the presence of 10 mol% of zeaxanthin. (2) Carotenoids increase the mobility of the polar headgroups of DMPC and increase water accessibility in that region of membrane, as was shown with tempocholine phosphatidic acid ester. (3) Rigid and highly anisotropic molecules dissolved in the DMPC membrane exhibit a bigger order of motion in the presence of polar carotenoids as was shown with cholestane spin label (CSL) and androstane spin label (ASL). Carotenoids decrease the rate of reorientational motion of CSL and do not influence the rate of ASL, probably due to the lack of the isooctyl side chain. The abrupt changes of spin label motion observed at the main phase transition of the DMPC bilayer are broadened and disappear at the presence of 10 mol% of carotenoids. In gel phase membranes, polar carotenoids increase motional freedom of most of the spin labels employed showing a regulatory effect of carotenoids on membrane fluidity. Our results support the hypothesis of Rohmer, M., Bouvier, P. and Ourisson, G. (1979) Proc. Natl. Acad. Sci. USA 76, 847-851, that carotenoids regulate the membrane fluidity in Procaryota as cholesterol does in Eucaryota. A model is proposed to explain these results in which intercalation of the rigid rod-like polar carotenoid molecules into the membrane enhances extended trans-conformation of the alkyl chains, decreases free space in the bilayer center, separate the phosphatidylcholine headgroups and decreases interaction between them.  相似文献   

6.
The interaction of bee venom melittin with erythrocyte membrane ghosts has been investigated by means of fluorescence quenching of membrane tryptophan residues, fluorescence polarization and ESR spectroscopy. It has been revealed that melittin induces the disorders in lipid-protein matrix both in the hydrophobic core of bilayer and at the polar/non-polar interface of melittin complexed with erythrocyte membranes. The peptide has been found to act most efficiently at the concentration of the order of 10(-10) mol/mg membrane protein. The apparent distance separating the membrane tryptophan and bound 1-anilino-8-naphthalenesulphonate (ANS) molecules is decreased upon melittin binding, which results in a significant increase of the maximum energy transfer efficiency. Significant changes in the fluorescence anisotropy of both 1,6-diphenyl-1,3,5-hexatriene and 1-anilino-8-naphthalenesulphonate bound to erythrocyte ghosts, which have been observed in the presence of melittin and crude venom, indicate membrane lipid bilayer rigidization. The effect of crude honey bee venom has been found to be of similar magnitude as the effect of pure melittin at the concentration of 10(-10) mol/mg membrane protein. Using two lipophilic spin labels, methyl 5-doxylpalmitate and 16-doxylstearic acid, we found that melittin at its increasing concentrations induces a well marked rigidization in the deeper regions of lipid bilayer, whereas the effect of rigidization near the membrane surface maximizes at the melittin concentration of 10(-10) mol/mg (10(-4) mol melittin per mole of membrane phospholipid). The decrease in the ratio hw/hs of maleimide and the rise in relative rotational correlation time (tau c) of iodacetamid spin label, indicate that melittin effectively immobilizes membrane proteins in the plane of the lipid bilayer. We conclude that melittin-induced rigidization of the lipid bilayer may induce a reorganization of lipid assemblies as well as the rearrangements in membrane protein pattern and consequently the alterations in lipid-protein interactions. Thus, the interaction of melittin with erythrocyte membranes is supposed to produce local conformational changes in membranes, which are discussed in the connection with their significance during the synergistic action of melittin and phospholipase of bee venom on red blood cells.  相似文献   

7.
The effect of enzymatic lipid peroxidation on the molecular order of microsomal membranes was evaluated by ESR spectroscopy using the spin probes 5-, 12-, and 16-doxyl-stearic acid. Rat liver microsomal membranes were peroxidized by the NADPH-dependent reaction in the presence of the chelate ADP-Fe3+. Peroxidation resulted in a preferential depletion of polyenoic fatty acids and an increase in the percentage composition of shorter fatty acyl chains. There was no change in the cholesterol/phospholipid ratio of the peroxidized microsomes. The molecular order of both control and peroxidized membranes decreased toward the central region of the bilayer, and the order parameter (S) of each probe was temperature dependent. Peroxidation of the microsomal membrane lipids resulted in an increase in the order parameter determined with the three stearic acid spin probes. Of the three probes, 12-doxylstearic acid was the most sensitive to the changes in membrane organization caused by peroxidation. These data indicate that ESR spectroscopy is a sensitive method of detecting changes in membrane order accompanying peroxidation of membrane lipids.  相似文献   

8.
本文采用自旋标记顺磁共振波谱技术,研究了山茛菪碱对人红细胞膜蛋白和膜脂运动的影响.结果表明:用马来酰亚胺标记的人红细胞膜,加入山茛菪碱后,其顺磁共振波谱中强、弱固定化作用谱的峰值比增大,膜蛋白的运动受到限制.山茛菪碱对红细胞膜脂的作用部位主要在极性头部,并影响膜脂的流动性.本文还对山茛菪碱与红细胞膜作用的可能机制进行了讨论.  相似文献   

9.
The effect of alk(en)ylresorcinol homologs (5-(n-nonadecyl)- and 5-(n-nonadecenyl)resorcinol) on the mobility of 5-doxyl- and 12-doxylstearate spin probes incorporated into DMPC, DMPC-cholesterol and erythrocyte membranes was studied. It was found that both homologs affect the properties of hydrophobic environment of the membranes: (1) In DMPC vesicles both homologs induce an increase in the order parameter of 5-doxylstearate at temperatures of Tc and above. (2) At higher concentrations of both homologs a decrease in mobility of the 12-doxylstearate was also observed. (3) In the presence of cholesterol in the liposome membrane the influence of alk(en)ylresorcinols on the mobility of spin probes was much greater, depending on the cholesterol content and the position of the probe in the bilayer. (4) In natural membranes (erythrocyte ghosts) both alkyl- and alkenylresorcinols induced a decrease of mobility in the region of 12-doxylstearate as well as in the region closer to the polar head groups of lipids (5-doxylstearate).  相似文献   

10.
Spin-label studies demonstrated age-related alterations of the erythrocyte membrane concerning both lipid and protein components. Decrease in fluidity of membrane lipids correlated with decreased membrane permeability to a hydrophobic spin label TEMPO, permeability to a more hydrophilic TEMPOL being less affected. The rigidification of membrane lipids was much more pronounced in whole membranes than in liposomes composed of membrane lipids, suggesting changes in lipid-protein interactions as an important factor in the decrease of lipid fluidity in aged red cells. ESR spectra of membrane-bound maleimide spin label evidenced alterations in the state of membrane proteins during cell aging in vivo.  相似文献   

11.
Spin-label studies demonstrated age-related alterations of the erythrocyte membrane concerning both lipid and protein components. Decrease in fluidity of membrane lipids correlated with decreased membrane permeability to a hydrophobic spin label TEMPO, permeability to a more hydrophilic TEMPOL being less affected. The rigidification of membrane lipids was much more pronounced in whole membranes than in liposomes composed of membrane lipids, suggesting changes in lipid-protein interactions as an important factor in the decrease of lipid fluidity in aged red cells. ESR spectra of membrane-bound maleimide spin label evidenced alterations in the state of membrane proteins during cell aging in vivo.  相似文献   

12.
Erythrocyte ghosts, prepared from the blood of rats fed zinc-deficient diets, were evaluated for membrane fluidity and surface sialic acid properties using spin-labeled probes and electron spin resonance (ESR) spectroscopy. These physical parameters of the erythrocyte ghosts from the zinc-deficient group were compared to those for erythrocyte ghosts obtained from ad libitum and pair fed controls consuming zinc-adequate diets. As the animals became progressively zinc deficient, the erythrocyte ghost membranes became more fluid than those from the control groups. In addition, the apparent rotational correlation time of Tempamine spin probes on surface sialic acid residues was smaller for the zinc deficient group, indicative of an increased rotational mobility of the spin label. These results suggest that zinc deficiency can have pronounced effects on the physical state of membrane bilayer lipids and cell surface carbohydrates and supports the view that many of the pathological signs of zinc deficiency are due to a general membrane defect.  相似文献   

13.
Abstract

The high antioxidant capacity of chlorogenic acid (CGA) in respect to biological systems is commonly known, though the molecular mechanism underlying that activity is not known. The aim of the study was to determine that mechanism at the molecular and cell level, in particular with regard to the erythrocyte and the lipid phase of its membrane. The effect of CGA on erythrocytes and lipid membranes was studied using microscopic, spectrophotometric and electric methods. The biological activity of the acid was determined on the basis of changes in the physical parameters of the membrane, in particular its osmotic resistance and shapes of erythrocytes, polar head packing order and fluidity of erythrocyte membrane as well as capacity and resistivity of black lipid membrane (BLM). The study showed that CGA becomes localized mainly in the outer part of membrane, does not induce hemolysis or change the osmotic resistance of erythrocytes, and induces formation of echinocytes. The values of generalized polarization and fluorescence anisotropy indicate that CGA alters the hydrophilic region of the membrane, practically without changing the fluidity in the hydrophobic region. The assay of electric parameters showed that CGA causes decreased capacity and resistivity of black lipid membranes. The overall result is that CGA takes position mainly in the hydrophilic region of the membrane, modifying its properties. Such localization allows the acid to reduce free radicals in the immediate vicinity of the cell and hinders their diffusion into the membrane interior.  相似文献   

14.
Thyroliberin (TRH) influence on microviscosity and thermoinduced structural transitions of biological membranes has been studied using spin probes and ESR technique. It was shown that TRH in three investigated concentrations (10(-6), 10(-10) and 10(-16) mol/l) in vivo resulted in increasing of the lipid microviscosity in the hydrophobic areas (20 A): the time of rotary correlation of 16-doxyl-stearic acid elevated by 17-50%. There were no statistically significant effects in the regions localized more close to the surface (8 A): the order parameter of 5-doxyl-stearic acid was not changed. The picture of thermoinduced structural transitions in described in this article. Under the action of TRH in vivo both the shift of structural transitions and the changes in their number have been observed. The results obtained indicated that the mechanism of the TRH effect has a non-receptor component.  相似文献   

15.
The effect of lead acetate on the physical state of membrane lipids in human erythrocytes in vitro was studied using the lipophilic fluorescence probe 1,6-diphenyl-1,3,5-hexatriene and spin probes 16-doxyl-stearate and iminoxyl palmitic acid. It was shown that 2-10 microM lead acetate causes an increase in both intensity and polarization of fluorescence of 1,6-diphenyl-1,3,5-hexatriene, indicating changes in the microviscosity of the lipid bilayer of erythrocyte membranes. Judging from the parameters of EPR spectra of 16-doxyl stearate and iminoxyl palmitic acid incorporated into erythrocyte membranes, 2-10 microM lead acetate increases the heterogeneity of the lipid bilayer in surface and deep hydrophobic layers of the erythrocyte membrane.  相似文献   

16.
The effect of fatty acids and monoglycerides on barrier properties of liposomal membranes prepared from egg phosphatidylcholine was investigated. The incorporation of these lipids as liposomal membrane components induced the alteration of the permeability to less permeable liposomally entrapped drugs, sulfanilic acid and procainamide ethobromide (PAEB). Monoolein caused greatly increased permeability of both drugs and unsaturated fatty acids markedly enhanced the release rate of PAEB, while saturated fatty acids caused a small increase in the release rate.Electron spin resonance (ESR) investigation with 5-nitroxide stearic acid showed that fatty acids disordered the hydrophobic region of the lipid bilayer and the disordering effect of unsaturated fatty acids was greater than that of saturated ones. It was demonstrated that the incorporated fatty acids and monoglycerides interacted with the polar region of the membranes by ESR study with cholestane label and 1H-NMR study. These results indicated that the increase in the membrane permeability caused by fatty acids and monoglycerides associated with the disorder in the membranes' interior and the interaction of the incorporated lipid with the polar head group of phospholipid.  相似文献   

17.
Electron spin resonance, hematologic, and deformability studies of erythrocytes from patients with Huntington's disease have been performed A decreased deformability of Huntington's disease erythrocytes compared to normal controls was demonstrated. No difference in erythrocyte hematologic indices, osmotic fragility, reticulocyte counts, or intracellular Na+ concentration was found. Huntington's disease serum had no demonstrable effect on electron spin resonance parameters of a protein-specific spin label attached to membrane proteins in control erythrocytes compared to the effect of control serum. This finding suggests that under the conditions employed no serum component or circulating factor is responsible for the changes in the physical state of membrane proteins in Huntington's disease erythrocytes (Butterfield, D.A., Oeswein, J.Q. and Markesbery, W.R. (1977) Nature 267, 453--455). No alteration in lipid fluidity of Huntington's disease erythrocyte membranes could be discerned suggesting that the underlying molecular defect in Huntington's disease involves a membrane protein. The results of the present studies on erythrocytes strongly support the concept that Huntington's disease is associated with a generalized membrane abnormality.  相似文献   

18.
Electron spin resonance (ESR) spectra of erythrocyte membranes of patients with hereditary spherocytosis (HS) and of healthy controls labeled with a maleimide spin label did not differ significantly both before and after prolonged incubation at 37 degrees C. It suggests that the different behavior of spin-labeled HS erythrocyte membranes upon incubation at a higher temperature reported previously is due indeed to structural abnormalities of HS red cell membranes and not to alterations in their proteolytic activity. Measurements of the rotational correlation time of Tempamine spin probe demonstrated a significant elevation of internal microviscosity of erythrocytes in HS, more pronounced in non-splenectomized patients.  相似文献   

19.
The effect of three water-soluble fusogens: dimethyl sulfoxide (DMSO), glycerol and sucrose on the structural properties of model lipid membranes has been studied by electron spin resonance (ESR) using 5-doxylstearic acid as a spin probe and by fluorescence spectroscopy using pyrene as an excimer forming fluorescent probe. All three fusogens tested produce a marked increase in the order parameter of the region close to the polar surface of the lipid bilayer. The ordering effect of DMSO, but not of glycerol and sucrose, is much stronger with respect to membranes prepared from acidic than from neutral phospholipids. The membrane-perturbing action of glycerol and sucrose manifests itself also in the reduced lateral mobility of membrane incorporated pyrene, indicating thus a decreased fluidity of the bilayer hydrophobic region. The structural perturbations produced in model membranes by DMSO, glycerol and sucrose are discussed in relation to the mechanism by which these substances promote cell fusion.  相似文献   

20.
Electron spin resonance techniques was used to study the fluidity of intact and hemoglobin free erythrocyte membranes from patients with Duchenne muscular distrophy and from members of their family. A greater mobility of spin label motion was observed only at the surface of hemoglobin free membranes in the patients. These studies suggest alterations in lipid-protein interaction, indicating in Duchenne muscular distrophy a generalized membrane abnormality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号