首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upon apoptosis induction, the proapoptotic protein Bax is translocated from the cytosol to mitochondria, where it promotes release of cytochrome c, a caspase‐activating protein. However, the molecular mechanisms by which Bax triggers cytochrome c release are unknown. Here we report that before the initiation of apoptotic execution by etoposide or staurosporin, an active calpain activity cleaves Bax at its N‐terminus, generating a potent proapoptotic 18‐kDa fragment (Bax/p18). Both the calpain‐mediated Bax cleavage activity and the Bax/p18 fragment were found in the mitochondrial membrane‐enriched fraction. Cleavage of Bax was followed by release of mitochondrial cytochrome c, activation of caspase‐3, cleavage of poly(ADP‐ribose) polymerase, and fragmentation of DNA. Unlike the full‐length Bax, Bax/p18 did not interact with the antiapoptotic Bcl‐2 protein in the mitochondrial fraction of drug‐treated cells. Pretreatment with a specific calpain inhibitor calpeptin inhibited etoposide‐induced calpain activation, Bax cleavage, cytochrome c release, and caspase‐3 activation. In contrast, transfection of a cloned Bax/p18 cDNA into multiple human cancer cell lines targeted Bax/p18 to mitochondria, which was accompanied by release of cytochrome c and induction of caspase‐3‐mediated apoptosis that was not blocked by overexpression of Bcl‐2 protein. Therefore, Bax/p18 has a cytochrome c–releasing activity that promotes cell death independent of Bcl‐2. Finally, Bcl‐2 overexpression inhibited etoposide‐induced calpain activation, Bax cleavage, cytochrome c release, and apoptosis. Our results suggest that the mitochondrial calpain plays an essential role in apoptotic commitment by cleaving Bax and generating the Bax/p18 fragment, which in turn mediates cytochrome c release and initiates the apoptotic execution. J. Cell. Biochem. 80:53–72, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

2.
3.
Glycogen synthase kinase-3 (GSK3) and p53 play crucial roles in the mitochondrial apoptotic pathway and are known to interact in the nucleus. However, it is not known if GSK3 has a regulatory role in the mitochondrial translocation of p53 that participates in apoptotic signaling following DNA damage. In this study, we demonstrated that lithium and SB216763, which are pharmacological inhibitors of GSK3, attenuated p53 accumulation and caspase-3 activation, as shown by PARP cleavage induced by the DNA-damaging agents doxorubicin, etoposide and camptothecin. Furthermore, each of these agents induced translocation of p53 to the mitochondria and activated the mitochondrial pathway of apoptosis, as evidenced by the release of cytochrome C from the mitochondria. Both mitochondrial translocation of p53 and mitochondrial release of cytochrome C were attenuated by inhibition of GSK3, indicating that GSK3 promotes the DNA damage-induced mitochondrial translocation of p53 and the mitochondrial apoptosis pathway. Interestingly, the regulation of p53 mitochondrial translocation by GSK3 was only evident with wild-type p53, not with mutated p53. GSK3 inhibition also reduced the phosphorylation of wild-type p53 at serine 33, which is induced by doxorubicin, etoposide and camptothecin in the mitochondria. Moreover, inhibition of GSK3 reduced etoposide-induced association of p53 with Bcl2 and Bax oligomerization. These findings show that GSK3 promotes the mitochondrial translocation of p53, enabling its interaction with Bcl2 to allow Bax oligomerization and the subsequent release of cytochrome C. This leads to caspase activation in the mitochondrial pathway of intrinsic apoptotic signaling.  相似文献   

4.
We evaluated the IGF1 system in cholangiocytes of primay biliary cirrhosis (PBC) patients and investigated the relationships with apoptosis. Biopsies of PBC patients (n=32) and normal subjects (n=5) were investigated by immunohistochemistry for expression in cholangiocytes of IGF1, IGF1-R, pAKT, terminal deoxynucleotide transferase end labeling (TUNEL), Bax (proapoptotic protein), and Bcl2 (antiapoptotic protein). Whereas normal cholangiocytes were almost negative, cholangiocytes of PBC patients showed strong IHC staining for IGF1, IGF1-R, and pAKT, which increases from stage I to stage IV, where >70% of cholangiocytes were positive. Bax/Bcl2 ratio reached the highest value (4.6) in PBC stage III when apoptosis is maximal (24% TUNEL positivity), whereas it declines in stage IV (1.4) when only 7.8% cholangiocytes were TUNEL positive. In PBC stages III and IV, expression of IGF1, IGF1-R, and pAKT in cholangiocytes was directly correlated with the antiapoptotic Bcl2 and inversely correlated with proapoptotic Bax, Bax/Bcl2 ratio, and TUNEL positivity. In conclusion, cholangiocytes of PBC patients showed a marked increase in IGF1, IGF1-R, and pAKT expression involving most cholangiocytes surviving in the terminal ductopenic stage. This was associated and correlated with a balance of pro- and antiapoptotic proteins favoring survival rather than apoptosis, suggesting a major role of IGF1 system in promoting cholangiocyte survival.  相似文献   

5.
6.
7.
Dysregulation of the cell cycle is common in human tumorigenesis. Therefore, CDK4/6 inhibitors targeting the cell cycle have been developed, and their antiapoptotic effects have been highly correlated with potential clinical therapies. The aim of this study was to identify the regulatory effect of the CDK4/6 inhibitor palbociclib on chemerin‐induced apoptosis of immortalized human granulosa‐lutein (hGL) cells and to elucidate its fundamental mechanism of action. Palbociclib enhanced antioxidative enzyme generation and diminished ROS generation in hGL cells. Furthermore, we found that palbociclib suppressed chemerin‐induced apoptotic protein expression, reversing the Bcl‐2/Bax ratio and inhibiting the p53/p21 waf pathway. Eventually, palbociclib decreased the level of cleaved caspase‐3 and ‐9, hindering the apoptosis of hGL cells. In general, the antiapoptotic efficacy of palbociclib could be attributed in part to the modulation of the mitochondrial apoptotic pathway in hGL cells.  相似文献   

8.
B‐cell lymphoma (Bcl‐2) is commonly associated with the progression and preservation of cancer and certain lymphomas; therefore, it is considered as a biological target against cancer. Nevertheless, evidence of all its structural binding sites has been hidden because of the lack of a complete Bcl‐2 model, given the presence of a flexible loop domain (FLD), which is responsible for its complex behavior. FLD region has been implicated in phosphorylation, homotrimerization, and heterodimerization associated with Bcl‐2 antiapoptotic function. In this contribution, homology modeling, molecular dynamics (MD) simulations in the microsecond (µs) time‐scale and docking calculations were combined to explore the conformational complexity of unphosphorylated/phosphorylated monomeric and trimeric Bcl‐2 systems. Conformational ensembles generated through MD simulations allowed for identifying the most populated unphosphorylated/phosphorylated monomeric conformations, which were used as starting models to obtain trimeric complexes through protein–protein docking calculations, also submitted to µs MD simulations. Principal component analysis showed that FLD represents the main contributor to total Bcl‐2 mobility, and is affected by phosphorylation and oligomerization. Subsequently, based on the most representative unphosphorylated/phosphorylated monomeric and trimeric Bcl‐2 conformations, docking studies were initiated to identify the ligand binding site of several known Bcl‐2 inhibitors to explain their influence in homo‐complex formation and phosphorylation. Docking studies showed that the different conformational states experienced by FLD, such as phosphorylation and oligomerization, play an essential role in the ability to make homo and hetero‐complexes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 393–413, 2016.  相似文献   

9.
Bharatham N  Chi SW  Yoon HS 《PloS one》2011,6(10):e26014
Bcl-X(L), an antiapoptotic Bcl-2 family protein, plays a central role in the regulation of the apoptotic pathway. Heterodimerization of the antiapoptotic Bcl-2 family proteins with the proapoptotic family members such as Bad, Bak, Bim and Bid is a crucial step in the apoptotic regulation. In addition to these conventional binding partners, recent evidences reveal that the Bcl-2 family proteins also interact with noncanonical binding partners such as p53. Our previous NMR studies showed that Bcl-X(L): BH3 peptide and Bcl-X(L): SN15 peptide (a peptide derived from residues S15-N29 of p53) complex structures share similar modes of bindings. To further elucidate the molecular basis of the interactions, here we have employed molecular dynamics simulations coupled with MM/PBSA approach. Bcl-X(L) and other Bcl-2 family proteins have 4 hydrophobic pockets (p1-p4), which are occupied by four systematically spaced hydrophobic residues (h1-h4) of the proapoptotic Bad and Bak BH3 peptides. We observed that three conserved hydrophobic residues (F19, W23 and L26) of p53 (SN15) peptide anchor into three hydrophobic pockets (p2-p4) of Bcl-X(L) in a similar manner as BH3 peptide. Our results provide insights into the novel molecular recognition by Bcl-X(L) with p53.  相似文献   

10.
p53-dependent apoptosis contributes to the side effects of cancer treatment, and genetic or pharmacological inhibition of p53 function can increase normal tissue resistance to genotoxic stress. It has recently been shown that p53 can induce apoptosis through a mechanism that does not depend on transactivation but instead involves translocation of p53 to mitochondria. To determine the impact of this p53 activity on normal tissue radiosensitivity, we isolated a small molecule named pifithrin-mu (PFTmu, 1) that inhibits p53 binding to mitochondria by reducing its affinity to antiapoptotic proteins Bcl-xL and Bcl-2 but has no effect on p53-dependent transactivation. PFTmu has a high specificity for p53 and does not protect cells from apoptosis induced by overexpression of proapoptotic protein Bax or by treatment with dexamethasone (2). PFTmu rescues primary mouse thymocytes from p53-mediated apoptosis caused by radiation and protects mice from doses of radiation that cause lethal hematopoietic syndrome. These results indicate that selective inhibition of the mitochondrial branch of the p53 pathway is sufficient for radioprotection in vivo.  相似文献   

11.
12.
13.
Members of the Bcl-2 family play key roles as proapoptotic (e.g., Bax) and antiapoptotic (e.g., Bcl-x(L)) regulators of programmed cell death. We previously identified the mitochondrial potassium channel Kv1.3 as a novel target of Bax. Incubating Kv1.3-positive isolated mitochondria with Bax triggered apoptotic events, whereas Kv1.3-deficient mitochondria were resistant to this stimulus. Mutation of Bax at lysine 128 (BaxK128E) abrogated its effects on Kv1.3 and the induction of apoptotic changes in mitochondria. These data indicate a toxin-like action of Bax on Kv1.3 to trigger at least some of the mitochondrial changes typical for apoptosis. To gain insight into the mechanism of Bax-Kv1.3 interaction, we mutated Glu158 of Bcl-x(L) (corresponding to K128 in Bax) to lysine. This substitution turned Bcl-x(L) proapoptotic. Transfection of double knockout (Bax(-/-)/Bak(-/-)) mouse embryonic fibroblasts (DKO MEFs) with either wild-type Bax, BaxK128E, or Bcl-x(L)E158K showed that apoptosis induced by various stimuli was defective in DKO MEFs and BaxK128E-transfected cells, but was recovered upon transfection with Bcl-xLE158K or wild-type Bax. Both wild-type Bax and BaxK128E can form similar ion-conducting pores upon incorporation into planar lipid bilayers. Our results point to a physiologically relevant interaction of Bax with Kv1.3 and further indicate a crucial role of a distinct lysine in determining the proapoptotic character of Bcl2-family proteins.  相似文献   

14.
The ARF and p53 tumor suppressors mediate Myc-induced apoptosis and suppress lymphoma development in E mu-myc transgenic mice. Here we report that the proapoptotic Bcl-2 family member Bax also mediates apoptosis triggered by Myc and inhibits Myc-induced lymphomagenesis. Bax-deficient primary pre-B cells are resistant to the apoptotic effects of Myc, and Bax loss accelerates lymphoma development in E mu-myc transgenics in a dose-dependent fashion. Eighty percent of lymphomas arising in wild-type E mu-myc transgenics have alterations in the ARF-Mdm2-p53 tumor suppressor pathway characterized by deletions in ARF, mutations or deletions of p53, and overexpression of Mdm2. The absence of Bax did not alter the frequency of biallelic deletion of ARF in lymphomas arising in E mu-myc transgenic mice or the rate of tumorigenesis in ARF-null mice. Furthermore, Mdm2 was overexpressed at the same frequency in lymphomas irrespective of Bax status, suggesting that Bax resides in a pathway separate from ARF and Mdm2. Strikingly, lymphomas from Bax-null E mu-myc transgenics lacked p53 alterations, whereas 27% of the tumors in Bax(+/-) E mu-myc transgenic mice contained p53 mutations or deletions. Thus, the loss of Bax eliminates the selection of p53 mutations and deletions, but not ARF deletions or Mdm2 overexpression, during Myc-induced tumorigenesis, formally demonstrating that Myc-induced apoptotic signals through ARF/Mdm2 and p53 must bifurcate: p53 signals through Bax, whereas this is not necessarily the case for ARF and Mdm2.  相似文献   

15.
The BH3-only protein PUMA plays an important role in the activation of apoptosis in response to p53. In different studies, PUMA has been described to function by either directly activating the pro-apoptotic proteins Bax and Bak, or by neutralizing anti-apoptotic members of the Bcl2 family. We have examined the contribution of regions of PUMA other than the BH3 domain to its localization and function. Although the hydrophobic domain in the C-terminus of PUMA is necessary for efficient mitochondrial localization of PUMA itself, PUMA proteins lacking this region can still induce apoptosis and localize to the mitochondria through binding to Bcl2. Even a nuclear localization signal (NLS)-tagged PUMA protein retains apoptotic activity and can be efficiently relocalized from the nucleus after interaction with ectopically expressed Bcl2, underscoring the efficiency of this interaction. Interestingly, unlike the Bcl2 interaction, the binding of PUMA to Bax is severely compromised by the loss of the C-terminal domain of PUMA. However, since the loss of the C-terminus does not compromise the ability of PUMA to induce cell death, our results indicate that the key apoptotic function of PUMA is through interaction with anti-apoptotic proteins such as Bcl2.  相似文献   

16.
A tumor suppressor gene product, ARF, sensitizes cells to apoptosis in the presence of appropriate collateral signals. In this study, we analyzed the mechanism of ARF-dependent apoptosis and demonstrated that ARF induces mitochondria-dependent apoptosis in p53 wild-type, ARF/p16-null cells. We also found that ARF evokes cytochrome c release from mitochondria, decreases mitochondrial membrane potential, and activates pro-caspase-9 to induce apoptosis. Our findings suggest that this apoptotic cellular modulation is brought about by up-regulation of the proapoptotic Bcl-2 family proteins Bax and Bim and down-regulation of antiapoptotic Bcl-2 in mitochondrial fractions. Additionally, ARF seems to down-regulate Bcl-2 in a p53-dependent manner while up-regulating Bax/Bim via a p53-independent pathway.  相似文献   

17.
Disruption of Mdm2-p53 interaction activates p53 signaling, disrupts the balance ofantiapoptotic and proapoptotic Bcl-2 family proteins and induces apoptosis in acutemyeloid leukemia (AML). Overexpression of Bcl-2 may inhibit this effect. Thus,functional inactivation of antiapoptotic Bcl-2 proteins may enhance apoptogenic effects ofMdm2 inhibition. We here investigate the potential therapeutic utility of combinedtargeting of Mdm2 by Nutlin-3a and Bcl-2 by ABT-737, recently developed inhibitors ofprotein-protein interactions. Nutlin-3a and ABT-737 induced Bax conformational changeand mitochondrial apoptosis in AML cells in a strikingly synergistic fashion. Nutlin-3ainduced p53-mediated apoptosis predominantly in S and G2/M cells, while cells in G1 were protected through induction of p21. In contrast, ABT-737 induced apoptosis predominantly in G1 , the cell cycle phase with the lowest Bcl-2 protein levels and Bcl-2/Bax ratios. In addition, Bcl-2 phosphorylation on Ser70 was absent in G1 but detectable in G2/M, thus lower Bcl-2 levels and absence of Bcl-2 phosphorylation appeared to facilitate ABT-737-induced apoptosis of G1 cells. The complementary effects of Nutlin-3a and ABT-737 in different cell cycle phases could, in part, account for their synergistic activity. Our data suggest that combined targeting of Mdm2 and Bcl-2 proteins could offer considerable therapeutic promise in AML.  相似文献   

18.
19.
Fetal alveolar type II (fATII) epithelial cells were used to evaluate the role of signaling factors involved in oxidative stress-induced programmed cell death (PCD; apoptosis). Bcl-2, an antiapoptotic proto-oncogene, showed maximum abundance in hypoxia and mild reoxygenation, but declined thereafter. The Bcl-2 counterpart, Bax, which promotes PCD, displayed an increasing logarithmic profile with ascending DeltapO(2) regimen, such that the ratio of Bcl-2/Bax decreased as pO(2) increased. The expression of p53, a cell cycle regulator, paralleled Bax abundance. Pretreatment of fATII cells with l-buthionine-(S,R)-sulfoximine, an irreversible inhibitor of gamma-glutamylcysteine synthetase, the rate-limiting enzyme in the biosynthesis of glutathione (GSH), enhanced Bax and p53 expression over Bcl-2. The GSH analogue, gamma-glutamylcysteinyl-ethyl ester, down-regulated Bax/p53 abundance but restored that of Bcl-2, thereby increasing Bcl-2/Bax. The antioxidant and GSH precursor N-acetyl-l-cysteine favored Bcl-2 at the expense of Bax/p53, whereas pyrrolidine dithiocarbamate induced Bax against Bcl-2, with mild effect on p53. Sulfasalazine, a potent and specific inhibitor of NF-kappaB, induced Bax at the expense of Bcl-2, in a p53-dependent manner. We conclude that the differential expression of signaling factors involved in PCD in the alveolar epithelium is redox-sensitive and mediated, at least in part, by a negative feedback mechanism transduced by NF-kappaB.  相似文献   

20.
PTP-S2/TC45 is a nuclear protein tyrosine phosphatase that activates p53 and induces caspase 1-dependent apoptosis. We analyzed the role of ICE protease-activating factor (Ipaf), an activator of caspase 1 in p53-dependent apoptosis. We also determined the sequence of events that lead to apoptosis upon caspase 1 activation by Ipaf. PTP-S2 expression induced Ipaf mRNA in MCF-7 cells which was dependent on p53. PTP-S2-induced apoptosis was inhibited by a dominant-negative mutant of Ipaf and also by an Ipaf-directed short-hairpin RNA. Doxorubicin-induced apoptosis was potentiated by the expression of caspase 1 (but not by a catalytic mutant of caspase 1) and required endogenous Ipaf. Doxorubicin treatment of MCF-7 cells resulted in activation of exogenous caspase 1, which was partly dependent on endogenous Ipaf. An activated form of Ipaf induced caspase 1-dependent apoptosis that was inhibited by Bcl2 and also by a dominant inhibitor of caspase 9 (caspase 9s). Caspase 1-dependent apoptosis induced by doxorubicin was also inhibited by Bcl2 and caspase 9s, but caspase 1 activation by activated Ipaf was not inhibited by Bcl2. Mitochondrial membrane permeabilization was induced by caspase 1 and activated Ipaf, which was inhibited by Bcl2, but not by caspase 9s. Expression of caspase 1 with activated Ipaf resulted in the activation of Bax at mitochondria. Our results suggest that Ipaf is involved in PTP-S2-induced apoptosis and that caspase 1, when activated by Ipaf, causes release of mitochondrial proteins (cytochrome c and Omi) through Bax activation, thereby functioning as an initiator caspase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号