首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Mammalian liver exhibits expression of members of the family of multidrug resistance (mdr) transporters (P-glycoproteins). P-glycoprotein isoforms encoded by mdr1 genes participate in extrusion of an array of xenobiotics into the bile. Induction of mdr1b mRNA expression has been shown to occur in rat hepatocytes in response to hepatotrophic growth factors. As the cytokine tumor necrosis factor alpha (TNF-α) is known to exert a direct mitogenic effect on hepatocytes, its influence on mdr1b expression was investigated. In primary rat hepatocytes cultured in the absence of TNF-α, a time-dependent increase in basal expression of mdr1b mRNA and in immunodetectable P-glycoprotein was observed. In cells treated with TNF-α (4,000 U/ml) for 3 days, expression of mdr1b mRNA and of immunodetectable P-glycoprotein was induced approximately twofold. Moreover, intracellular steady-state levels of the mdr1 substrate rhodamine 123 were decreased in cells pretreated with TNF-α in comparison to controls, indicating an increase in functional transporter(s) mediating dye extrusion. Treatment of hepatocytes with antioxidants (1 mM ascorbic acid and 2% dimethyl sulfoxide) for 3 days markedly suppressed mdr1b mRNA and P-glycoprotein expression both in cells cultured in the presence of TNF-α and in the absence of the cytokine, but did not fully abolish mdr1b mRNA induction by TNF-α, supporting the notion that reactive oxygen species participate in regulation of basal mdr1b gene expression during hepatocyte culture. In conclusion, the present data indicate that by inducing mdr1b expression in hepatocytes, TNF-α may affect the capacity of the liver for extrusion or detoxification of endogenous or xenobiotic mdr1 substrates. J. Cell. Physiol. 176:506–515, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
The blood-brain barrier (BBB) plays an important role in controlling the passage of molecules from blood to brain extracellular fluid. The multidrug efflux pump P-glycoprotein (P-gp) is highly expressed in the luminal membrane of brain endothelium and contributes to the formation of a functional barrier to lipid-soluble drugs such as anticancer agents. The mdr1a P-gp-encoding gene is exclusively expressed in the rodent BBB. Primary cultures of rat brain endothelial cells and GP8.3 cells showed a dramatic decrease in mdr1a mRNA level and some expression of mdr1b mRNA. GPNT cells, derived from GP8.3 cells after transfection with a puromycin resistance gene, were chronically treated with 5 microg/mL puromycin, a P-gp substrate. Compared with rat brain endothelial cells and GP8.3 cells, GPNT cells exhibited a very high level of expression of mdr1a mRNA together with a moderate level of mdr1b mRNA expression. Accordingly, P-gp expression and activity were strongly increased. When GP8.3 and puromycin-starved GPNT cells were treated with puromycin, mdr1a expression was selectively increased. High expression of mdr1a mRNA in GPNT cells may thus be related to the chronic treatment with puromycin. We conclude that GPNT cells may be used as a valuable rat in vitro model for studying the regulation of mdr1a expression at the BBB level.  相似文献   

5.
Niemann-Pick type C disease is a progressive neurological disease with cholesterol storage in liver, and npc1-/- mice share these features and are sterile. We have searched for the cause of sterility and found normal folliculogenesis and progesterone levels but lack of implantation. Multiple drug resistance (MDR) P-glycoproteins are plasma membrane proteins implicated in the movement of drugs and lipids across membranes. Their functions are inhibited by progesterone, which has been shown to alter cellular cholesterol homeostasis and has implicated P-glycoproteins in the movement of cholesterol to the endoplasmic reticulum. We have introduced the mdr1a knockout into the npc1 mutant line. While the neurological disease continues at its usual rate, preventing the females from taking care of their litters, npc1-/-, mdr1a-/- females became fertile. Although the mdr1a P-glycoprotein co-localizes with caveolae, neither caveolin-1 nor npc1 levels were significantly altered in the livers of double homozygotes. The absence of mdr1a was confirmed by immunoblotting, but npc1 deficiency was not associated with consistent changes in cerebellar mdr1a in mdr1a+/+ mice. The results show that a mdr1a mutation is an in vivo suppressor of female sterility in npc1 deficient mice.  相似文献   

6.
Two closely related but functionally distinct P-glycoprotein isoforms are encoded by the murine multidrug-resistance genes mdr1a and mdr1b. In a series of independently selected multidrug-resistant (MDR) J774.2 cell lines, mdr gene amplification and/or overexpression and overproduction of either the mdr1a or mdr1b products, or both gene products, correlates with the MDR phenotype. To investigate the possibility that mutations in the promoter regions of the mdr1a or mdr1b genes could influence their differential expression, mdr promoter-specific probes were used to detect and map potential structural alterations. An unusual structural rearrangement was found in the 5'-region of the amplified mdr1a allele in J7.T1, a cell line selected with taxol. To characterize this rearrangement, the regulatory regions of the mdr1a and mdr1b genes were analyzed. Whereas no gross structural alterations were detected by Southern blot hybridization using the mdr1b promoter probe, a novel amplified EcoRI fragment was detected by the mdr1a promoter probe. To determine the precise nature of this mutation, an mdr1a 5'-genomic clone was isolated from J7.T1 cells. Sequence analysis revealed an unusual DNA rearrangement consisting of the mdr1b gene, from its fourth intron toward its 3'-end, upstream of an intact mdr1a promoter on the amplified allele. We propose that this event occurred by an unequal sister chromatid exchange that was mediated by LINE-1 repetitive elements.  相似文献   

7.
C C Chao  C M Ma  S Lin-Chao 《FEBS letters》1991,291(2):214-218
The human P-glycoprotein gene family contains the mdr1 and the mdr3 gene. The mdr1 P-glycoprotein is over-expressed in multidrug resistant (MDR) tumor cells and is believed to play a role in the elimination of certain cytotoxic drugs used in the chemotherapy of cancer. The mdr3 gene has not been found to be amplified or over-expressed in MDR cells. In this study, gene-specific mdr gene probes were developed for the detection of the gene and the total mRNA level. Southern and Northern hybridization analyses showed that the mdr genes and the mRNA levels were increased 30--40-fold in a MDR human colon cancer cell line. In addition, this MDR cell line had an altered growth rate and morphology and detectable double minute chromosomes.  相似文献   

8.
The mdr1 gene, responsible for multidrug-resistance, codes for P-glycoprotein   总被引:23,自引:0,他引:23  
The development of simultaneous resistance to multiple drugs in cultured cells occurs after selection for resistance to single agents. This multidrug-resistance phenotype is thought to mimic multidrug-resistance in human tumors treated with chemotherapy. Both the expression of a membrane protein, termed P170 or P-glycoprotein, and the expression of a cloned DNA fragment, termed mdr1, have been shown independently to be associated with multidrug-resistance in cultured cells. In this work, we show that human KB carcinoma cells which express the mdr1 gene also express P-glycoprotein, and that cDNAs encoding P-glycoprotein cross-hybridize with mdr1 cDNAs. Thus, the mdr1 gene codes for P-glycoprotein.  相似文献   

9.
P-glycoprotein (P-gp), an ATP-dependent membrane pump encoded by mdr, plays, in addition to its ability to efflux toxins, a role in the resistance to pathogens. We employed mdr1a gene knock out (mdr1a-/-) mice and ectromelia virus (EV) to elucidate the role of P-gp in resistance to EV. Mdr1a-/- mice are more susceptible to EV infection than wild type (wt) mice, showing increased mortality and morbidity. Unexpectedly, virus titres in liver, and in vitro in macrophages and splenocytes were significantly lower in the more susceptible mdr1a-/- mice than wt littermates. Analysis of immunological mechanisms known to influence resistance to EV infection, such as NK and cytotoxic T cell responses, EV specific antibody and cytokine levels did not reveal significant differences between the two strains of mice. Only dendritic cells from mdr1a-/- mice showed impaired migration to the draining lymph nodes compared to wt mice. Our data show that P-gp plays an important role in EV infection by as yet undefined mechanisms.  相似文献   

10.
11.
12.
13.
Two vinblastine-resistant sublines of the murine macrophage-like cell line J774.2, J7.V1-1 and J7.V3-1, overproduce unique forms of P-glycoprotein that are encoded by distinct mdr genes, mdr1b and mdr1a, respectively. Degradation rates of the two P-glycoprotein isoforms were measured by immunoprecipitation of P-glycoprotein. The half-life of immunoprecipitable P-glycoprotein from J7.V1-1 cells was 16.8 +/- 0.5 hours and from J7.V3-1 cells, 17.4 +/- 0.5 hours. This rate was not influenced by the presence of vinblastine in the growth medium. The data indicate that P-glycoproteins derived from distinct genes have similar degradation rates.  相似文献   

14.
15.
Class I P-glycoproteins [Pgp; MDR1 (ABCB1) in humans, mdr1a and mdr1b in mice] confer resistance to structurally diverse chemotherapeutic drugs in cultured cells and intact animals, but the function of these proteins in normal physiology remains poorly characterized. Based on studies in cell culture, a putative role for class I Pgp in absorption and intracellular trafficking of sterols has been proposed. We examined wild-type and mdr1a(-/)-/1b(-/)- mice to determine whether class I Pgp affects cholesterol absorption and esterification in vivo. Using a dual-isotope protocol, absorption of orally administered radiolabeled cholesterol into serum did not differ between wild-type and mdr1a(-/)-/1b(-/)- mice, demonstrating that class I Pgp is not essential for overall absorption of cholesterol through the intestine. However, the ratio of oral to intravenous labeled cholesterol in liver was decreased significantly in mdr1a(-/)-/1b(-/)- mice. In the liver, but not other tested organs, deletion of class I Pgp enhanced kinetics of esterification of an oral bolus of radiolabeled cholesterol without affecting esterification of cholesterol administered intravenously. Steady-state hepatic content of cholesterol and esterified cholesterol also were unaffected by absence of mdr1a and mdr1b.Thus, in normal animals, class I Pgp functions to kinetically increase hepatic accumulation and decrease esterification of orally administered cholesterol in vivo.  相似文献   

16.
The multidrug resistance (mdr) gene family has been shown to encode a membrane glycoprotein, termed the P-glycoprotein, which functions as a drug efflux pump with broad substrate specificity. This multigene family is expressed in a tissue-specific fashion in a wide variety of normal and neoplastic tissues. The regulation of mdr gene expression in normal tissues is not understood. We have recently shown that mdr mRNA and the P-glycoprotein increases dramatically in the secretory luminal and glandular epithelium of the gravid murine uterus. This observation has suggested that mdr gene expression in the uterus is controlled by the physiologic changes associated with pregnancy. This report now demonstrates that mdr mRNA and P-glycoprotein are induced at high levels in the uterine secretory epithelium by the combination of estrogen and progesterone, the major steroid hormones of pregnancy. This regulation of mdr gene expression in the uterus does not require any other contribution from the fetus or placenta. The data indicate that this gene locus is hormonally responsive to estrogen and progesterone in the uterine secretory epithelium, suggesting an important and physiologically regulated role during pregnancy.  相似文献   

17.
18.
Under experimental conditions, Plasmodium berghei infection causes cerebral malaria (CM) in susceptible strains of mice such as C57BL/6 and CBA/Ca, whereas BALB/c or DBA/2J strains serve as a model for CM-resistant mice. The aim of the present study was to investigate the susceptibility of the CF1 mouse strain, carrying a spontaneous mutation of the mdr1a gene, to infection with Plasmodium berghei ANKA (PbA). The mdr1a gene codes for P-glycoprotein (P-gp/ABCB1), an efflux pump that is one of the major components of the blood-brain barrier. P-gp effluxes a broad range of xenobiotics from the brain to blood, preventing accumulation and toxicity in the central nervous system. CFI mdr1a (-/-) mice are used to investigate drug transport by efflux pumps. Because many antimalarial agents are effluxed by P-gp (mefloquine, quinine), it was important to determine whether CF1 mice can develop cerebral malaria to predict drug toxicity during cerebral malaria. Our work showed that CF1 mdr1a (-/-) mice are susceptible to PbA. CF1 and C57BL/6N mice (the reference strain) infected with PbA have similar profiles with regard to clinical signs, brain histological lesions, and brain macrophagic activation observed by immunohistological methods.  相似文献   

19.
20.
Abstract: Two membrane glycoproteins acting as energy-dependent efflux pumps, mdr -encoded P-glycoprotein (P-gp) and the more recently described multidrug resistance-associated protein (MRP), are known to confer cellular resistance to many cytotoxic hydrophobic drugs. In the brain, P-gp has been shown to be expressed specifically in the capillary endothelial cells forming the blood-brain barrier, but localization of MRP has not been well characterized yet. Using RT-PCR and immunoblot analysis, we have compared the expression of P-gp and Mrp1 in homogenates, isolated capillaries, primary cultured endothelial cells, and RBE4 immortalized endothelial cells from rat brain. Whereas the mdr1a P-gp-encoding mRNA was specifically detected in brain microvessels and mdr1b mRNA in brain parenchyma, mrp1 mRNA was present both in microvessels and in parenchyma. However, Mrp1 was weakly expressed in microvessels. Mrp1 expression was higher in brain parenchyma, as well as in primary cultured brain endothelial cells and in immortalized RBE4 cells. This Mrp1 overexpression in cultured brain endothelial cells was less pronounced when the cells were cocultured with astrocytes. A low Mrp activity could be demonstrated in the endothelial cell primary monocultures, because the intracellular [3H]vincristine accumulation was increased by several MRP modulators. No Mrp activity was found in the cocultures or in the RBE4 cells. We suggest that in rat brain, Mrp1, unlike P-gp, is not predominantly expressed in the blood-brain barrier endothelial cells and that Mrp1 and the mdr1b P-gp isoform may be present in other cerebral cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号