共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Summary The assembly of RNA polymerase was studied in Escherichia coli mutants encoding large N-terminal amber fragments of the subunit. Whereas the removal of up to 20% of the carboxy-terminus does not prevent the formation of premature core enzyme, the amber fragments seem to interfere with holoenzyme production. These studies permit, therefore, the localization of a region on the polypeptide involved in sigma binding.Paper VIII is Glass et al. (1986a) 相似文献
4.
Nobuyuki Fujita Akira Ishihama Yoji Nagasawa Susumu Ueda 《Molecular & general genetics : MGG》1987,210(1):5-9
Summary Antibodies were raised against a synthetic tetradecameric peptide with an amino acid sequence, DLIQEGNIGLMKAV, which corresponds to the most highly conserved region of bacterial RNA polymerase factors. In a Western-blot analysis of total Escherichia coli proteins, the antiserum reacted specifically with at least three proteins with apparent molecular weights of 75 kDa, 27 kDa and 23 kDa, in addition to the known factors (70 and 32). The majorities of 70 and 32 were recovered as associated forms with the RNA polymerase on glycerol gradient centrifugation, while the other cross-reacting proteins were not. Unambiguous evidence was obtained which indicated that the intracellular level of 32 increased rapidly upon heatshock, at least in the strain containing high copy numbers of the rpoH gene. 相似文献
5.
6.
J. C. Cox 《Archives of microbiology》1989,152(4):397-400
Four classes of Escherichia coli mutants deficient in either or both of their anaerobic selenium-containing formate dehydrogenases (FDH) were isolated. A class I mutant devoid of FDHH activity specifically linked to benzyl viologen (BV) produced a small amount of the FDHH 80,000 dalton selenopeptide. Three class II mutants were deficient in FDHN activity specifically linked to phenazine methosulfate (PMS) and exhibited a selenopeptide doublet rather than the FDHN 110,000 dalton selenosubunit. Three class III mutants were selenium incorporation deficient and did not exhibit either FDH activity or 75Selabeled selenopolymers. A class IV mutant was devoid of PMS-linked FDHN activity; neither its FDHN 110,000 dalton selenosubunit nor its BV-linked FDHH activity was fully regulated by nitrate.Abbreviations FDH
formate dehydrogenase
- BV
benzyl viologen
- MV
methyl viologen
- PMS
phenazine methosulfate
- SDS-PAGE
sodium dodecyl sulfate-polyacrylamide gel electrophoresis 相似文献
7.
8.
9.
10.
11.
Kanuri M Nechev LV Kiehna SE Tamura PJ Harris CM Harris TM Lloyd RS 《DNA Repair》2005,4(12):27433-1380
The mutagenic potentials of DNAs containing site- and stereospecific intrastrand DNA crosslinks were evaluated in Escherichia coli cells that contained a full complement of DNA polymerases or were deficient in either polymerases II, IV, or V. Crosslinks were made between adjacent N(6)-N(6) adenines and consisted of R,R- and S,S-butadiene crosslinks and unfunctionalized 2-, 3-, and 4-carbon tethers. Although replication of single-stranded DNAs containing the unfunctionalized 3- and 4-carbon tethers were non-mutagenic in all strains tested, replication past all the other intrastrand crosslinks was mutagenic in all E. coli strains, except the one deficient in polymerase II in which no mutations were ever detected. However, when mutagenesis was analyzed in cells induced for SOS, mutations were not detected, suggesting a possible change in the overall fidelity of polymerase II under SOS conditions. These data suggest that DNA polymerase II is responsible for the in vivo mutagenic bypass of these lesions in wild-type E. coli. 相似文献
12.
Summary The and subunit of RNA polymerase are thought to be controlled by a translational feedback mechanism regulated by the concentration of RNA polymerase holoenzyme. To study this regulation in vivo, an inducible RNA polymerase overproduction system was developed. This system utilizes plasmids from two incompatibility groups that carry RNA polymerase subunit genes under lac promoter/operator control. When the structural genes encoding the components of core RNA polymerase (, and ) or holoenzyme (, , and 70) are present on the plasmids, induction of the lac promoter results in a two fold increase in the concentration of functional RNA polymerase. The induction of RNA polymerase overproduction is characterized by an initial large burst of synthesis followed by a gradual decrease as the concentration of RNA polymerase increases. Overproduction of RNA polymerase in a strain carrying an electrophoretic mobility mutation in the rpoB gene results in the specific repression of synthesis off the chromosome. These results indicate that RNA polymerase feedback regulation controls synthesis in vivo. 相似文献
13.
14.
Ryoji Ito Shigeru Akimoto Yoshinari Ohnishi 《Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression》1985,825(1):1-11
Degradation of otherwise stable rRNA and tRNA takes place in the presence of rifampin, dependent on the F plasmid srnB gene. We have reported that a protein newly synthesized in the presence of rifampin might be a product of the srnB gene required for stable RNA degradation (Ito, R. and Ohnishi, Y. (1983) Biochim. Biophys. Acta 739, 27–34). Here we have further studied the mechanism of srnB expression. Among eighteen mutants with altered RNA polymerase, two (TJ2470 (rpoC4) and TJ302 (rpoC56)) showed RNA degradation at high temperature (42°C) when the srnB gene was present. Labeling proteins at 42°C in strain TJ2470 indicated that a protein of molecular weight 12 000 was a product of the srnB gene, and that expression of the srnB gene provoked RNA degradation. Using plasmid pTK4, in which the srnB gene is inserted downstream of the promoter of lacZ, lac promoter-dependent expression of the srnB gene, with production of the putative protein product, also induced RNA degradation at 42°C, with no requirement for added rifampin or altered RNA polymerase. RNA degradation in these conditions was quite similar to that in the case of the addition of rifampin; e.g., it showed some responses to Mg2+, temperature and RNAase I content of the cells. Expression of the srnB gene dependent on lac promoter was also observed in minicells. Thus, it is inferred that the srnB gene is probably repressed under normal conditions with its own promoter; its expression initiates RNA turnover. 相似文献
15.
DNA polymerase III holoenzyme of Escherichia coli: Components and function of a true replicative complex 总被引:9,自引:0,他引:9
Charles S. McHenry 《Molecular and cellular biochemistry》1985,66(1):71-85
Summary The DNA polymerase III holoenzyme is a complex, multisubunit enzyme that is responsible for the synthesis of most of the Escherichia coli chromosome. Through studies of the structure, function and regulation of this enzyme over the past decade, considerable progress has been made in the understanding of the features of a true replicative complex. The holoenzyme contains at least seven different subunits. Three of these, , and , compose the catalytic core. Apparently is the catalytic subunit and the product of the dnaE gene. Epsilon, encoded by dnaQ (mutD), is responsible for the proofreading 35 activity of the polymerase. The function of the B subunit remains to be established. The auxiliary subunits, , and , encoded by dnaN, dnaZ and dnaX, respectively, are required for the functioning of the polymerase on natural chromosomes. All of the proteins participate in increasing the processivity of the polymerase and in the ATP-dependent formation of an initiation complex. Tau causes the polymerase to dimerize, perhaps forming a structure that can coordinate leading and lagging strand synthesis at the replication fork. This dimeric complex may be asymmetric with properties consistent with the distinct requirements for leading and lagging strand synthesis. 相似文献
16.
Synthetic methylotrophy aims to engineer methane and methanol utilization pathways in platform hosts like Escherichia coli for industrial bioprocessing of natural gas and biogas. While recent attempts to engineer synthetic methylotrophs have proved successful, autonomous methylotrophy, i.e. the ability to utilize methane or methanol as sole carbon and energy substrates, has not yet been realized. Here, we address an important limitation of autonomous methylotrophy in E. coli: the inability of the organism to synthesize several amino acids when grown on methanol. By activating the stringent/stress response via ppGpp overproduction, or DksA and RpoS overexpression, we demonstrate improved biosynthesis of proteinogenic amino acids via endogenous upregulation of amino acid synthesis pathway genes. Thus, we were able to achieve biosynthesis of several limiting amino acids from methanol-derived carbon, in contrast to the control methylotrophic E. coli strain. This study addresses a key limitation currently preventing autonomous methylotrophy in E. coli and possibly other synthetic methylotrophs and provides insight as to how this limitation can be alleviated via stringent/stress response activation. 相似文献
17.
M. V. Kashlev A. I. Gragerov V. G. Nikiforov 《Molecular & general genetics : MGG》1989,216(2-3):469-474
Summary
Escherichia coli cells, carrying a rifampicin sensitive RNA polymerase -subunit gene in the chromosome and a rifampicin resistant -subunit gene placed under the control of a strong promoter in a multicopy plasmid, are unable to grow in the presence of rifampicin, despite the accumulation of large quantities of the resistant subunit. A major portion of the overproduced subunit is found in an insoluble form. Conditions known to induce the heat shock proteins (hsps), e.g. elevated temperature or the presence of ethanol in the growth medium, increase the amount of the plasmid-borne -subunit which apparently assembles into active RNA polymerase and makes the plasmid bearing cells rifampicin resistant. Alternatively, plasmid-borne subunits assemble into RNA polymerase with low efficiency in rpoH mutant cells known to have reduced level of hsps. We suggest that the plasmid-borne subunit is poorly assembled into RNA polymerase and that hsps promote the assembly by interfering with -subunit aggregation. 相似文献
18.
Monoclonal hybridoma antibodies directed against RNA polymerase from E. coli have been obtained. Only a few have been found to inhibit the enzyme activity. Antibodies produced by two clones, PYN-1 and PYN-2, inhibit RNA polymerase at the stage of RNA chain elongation. The PYN-1 antibodies react with the beta'-subunit of the enzyme. The PYN-2 antibodies react with the beta-subunit and with its 130 kDa amber fragment. 相似文献
19.