首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial introns in flowering plant genes are virtually all classified as members of the group II ribozyme family although certain structural features have degenerated to varying degrees over evolutionary time. We are interested in the impact that unconventional intron architecture might have on splicing biochemistry in vivo and we have focused in particular on intronic domains V and VI, which for self-splicing introns provide a key component of the catalytic core and the bulged branchpoint adenosine, respectively. Notably, the two transesterification steps in classical group II splicing are the same as for nuclear spliceosomal introns and release the intron as a lariat. Using RT-PCR and circularized RT-PCR, we had previously demonstrated that several wheat mitochondrial introns which lack a branchpoint adenosine have atypical splicing pathways, and we have now extended this analysis to the full set of wheat introns, namely six trans-splicing and sixteen cis-splicing ones. A number of introns are excised using non-lariat pathways and interestingly, we find that several introns which do have a conventional domain VI also use pathways that appear to exploit other internal or external nucleophiles, with the lariat form being relatively minor. Somewhat surprisingly, several introns with weakly-structured domain V/VI helices still exhibit classical lariat splicing, suggesting that accessory factors aid in restoring a splicing-competent conformation. Our observations illustrate that the loss of conventional group II features during evolution is correlated with altered splicing biochemistry in an intron-distinctive manner.  相似文献   

2.
82 of the 155 chloroplast introns in Euglena gracilis have been categorized as group II introns. Because they are shorter and more divergent than group II introns from other organisms, the assignment of these Euglena introns to the group II class has been questioned. In the current study, two homologs of E. gracilispetB intron 1 and four homologs of psbC intron 2 have been isolated from related species and characterized. Based on a comparative sequence analysis of intron homologs, the intron core and four of the six helical domains present in the canonical group II intron structural model are conserved in E. gracilispetB intron 1 and psbC intron 2 and all of their homologs. Distal portions of domain I, which are involved in most of the tertiary interactions, are less well conserved than the central core. Received: 27 June 1997 / Accepted: 6 August 1997  相似文献   

3.
4.
Francisella tularensis is a highly infectious Gram-negative bacterium that is the causative agent of tularemia. Very little is known about the molecular mechanisms responsible for F. tularensis virulence, in part due to the paucity of genetic tools available for the study of F. tularensis. We have developed a gene knockout system for F. tularensis that utilizes retargeted mobile group II introns, or “targetrons”. These targetrons disrupt both single and duplicated target genes at high efficiency in three different F. tularensis subspecies. Here we describe in detail the targetron-based method for insertional mutagenesis of F. tularensis genes, which should facilitate a better understanding of F. tularensis pathogenesis. Group II introns can be adapted to inactivate genes in bacteria for which few genetic tools exist, thus providing a powerful tool to study the genetic basis of bacterial pathogenesis.  相似文献   

5.
Group I introns are autonomous genetic elements that can catalyze their own excision from pre-RNA. Understanding how group I introns move in nuclear ribosomal (r)DNA remains an important question in evolutionary biology. Two models are invoked to explain group I intron movement. The first is termed homing and results from the action of an intron-encoded homing endonuclease that recognizes and cleaves an intronless allele at or near the intron insertion site. Alternatively, introns can be inserted into RNA through reverse splicing. Here, we present the sequences of two large group I introns from fungal nuclear rDNA, which both encode putative full-length homing endonuclease genes (HEGs). Five remnant HEGs in different fungal species are also reported. This brings the total number of known nuclear HEGs from 15 to 22. We determined the phylogeny of all known nuclear HEGs and their associated introns. We found evidence for intron-independent HEG invasion into both homologous and heterologous introns in often distantly related lineages, as well as the "switching" of HEGs between different intron peripheral loops and between sense and antisense strands of intron DNA. These results suggest that nuclear HEGs are frequently mobilized. HEG invasion appears, however, to be limited to existing introns in the same or neighboring sites. To study the intron-HEG relationship in more detail, the S943 group I intron in fungal small-subunit rDNA was used as a model system. The S943 HEG is shown to be widely distributed as functional, inactivated, or remnant ORFs in S943 introns.  相似文献   

6.
7.
8.
Group I introns are relatively common within nuclear ribosomal DNA of eukaryotic microorganisms, especially in myxomycetes. Introns at position S516 in the small subunit ribosomal RNA gene are particularly common, but have a sporadic occurrence in myxomycetes. Fuligo septica, Badhamia gracilis, and Physarum flavicomum, all members of the family Physaraceae, contain related group IC1 introns at this site. The F. septica intron was studied at the molecular level and found to self-splice as naked RNA and to generate full-length intron RNA circles during incubation. Group I introns at position S516 appear to have a particularly widespread distribution among protists and fungi. Secondary structural analysis of more than 140 S516 group I introns available in the database revealed five different types of organization, including IC1 introns with and without His-Cys homing endonuclease genes, complex twin-ribozyme introns, IE introns, and degenerate group I-like introns. Both intron structural and phylogenetic analyses indicate a multiple origin of the S516 introns during evolution. The myxomycete introns are related to S516 introns in the more distantly related brown algae and Acanthamoeba species. Possible mechanisms of intron transfer both at the RNA- and DNA-levels are discussed in order to explain the observed widespread, but scattered, phylogenetic distribution.  相似文献   

9.
10.
A maize gene designated thylakoid assembly 8 (tha8) emerged from a screen for nuclear mutations that cause defects in the biogenesis of chloroplast thylakoid membranes. The tha8 gene encodes an unusual member of the pentatricopeptide repeat (PPR) family, a family of helical repeat proteins that participate in various aspects of organellar RNA metabolism. THA8 localizes to chloroplasts, where it associates specifically with the ycf3-2 and trnA group II introns. The splicing of ycf3-2 is eliminated in tha8 mutants, and trnA splicing is strongly compromised. Reverse-genetic analysis of the tha8 ortholog in Arabidopsis thaliana showed that these molecular functions are conserved, although null alleles are embryo lethal in Arabidopsis and seedling lethal in maize. Whereas most PPR proteins have more than 10 PPR motifs, THA8 belongs to a subfamily of plant PPR proteins with only four PPR motifs and little else. THA8 is the first member of this subfamily with a defined molecular function, and illustrates that even small PPR proteins have the potential to mediate specific intermolecular interactions in vivo.  相似文献   

11.
Group II introns are ribozymes occurring in genes of plants, fungi, lower eukaryotes, and bacteria. These large RNA molecular machines, ranging in length from 400 to 2500 nucleotides, are able to catalyze their own excision from pre-mRNA, as well as to reinsert themselves into RNA or sometimes even DNA. The intronic domain 1 contains two sequences (exon binding sites 1 and 2, EBS1 and EBS2) that pair with their complementary regions at the 3′-end of the 5′-exon (intron binding sites 1 and 2, IBS1 and IBS2) such defining the 5′-splice site. The correct recognition of the 5′-splice site stands at the beginning of the two steps of splicing and is thus crucial for catalysis. It is known that metal ions play an important role in folding and catalysis of ribozymes in general. Here, we characterize the specific metal ion requirements for the formation of the 5′-splice site recognition complex from the mitochondrial yeast group II intron Sc.ai5γ. Circular dichroism studies reveal that the formation of the EBS1 · IBS1 duplex does not necessarily require divalent metal ions, as large amounts of monovalent metal ions also promote the duplex, albeit at a 5000 times higher concentration. Nevertheless, micromolar amounts of divalent metal ions, e.g. Mg2+ or Cd2+, strongly promote the formation of the 5′-splice site. These observations illustrate that a high charge density independent of the nature of the ion is needed for binding EBS1 to IBS1, but divalent metal ions are presumably the better players.  相似文献   

12.
Li CF  Costa M  Michel F 《The EMBO journal》2011,30(15):3040-3051
Like spliceosomal introns, the ribozyme-containing group II introns are excised as branched, lariat structures: a 2'-5' bond is created between the first nucleotide of the intron and an adenosine in domain VI, a component which is missing from available crystal structures of the ribozyme. Comparative sequence analysis, modelling and nucleotide substitutions point to the existence, and probable location, of a specific RNA receptor for the section of domain VI that lies just distal to the branchpoint adenosine. By designing oligonucleotides that tether domain VI to this novel binding site, we have been able to specifically activate lariat formation in an engineered, defective group II ribozyme. The location of the newly identified receptor implies that prior to exon ligation, the distal part of domain VI undergoes a major translocation, which can now be brought under control by the system of anchoring oligonucleotides we have developed. Interestingly, these oligonucleotides, which link the branchpoint helix and the binding site for intron nucleotides 3-4, may be viewed as counterparts of U2-U6 helix III in the spliceosome.  相似文献   

13.
14.
In the current era of massive discoveries of noncoding RNAs within genomes, being able to infer a function from a nucleotide sequence is of paramount interest. Although studies of individual group I introns have identified self-splicing and nonself-splicing examples, there is no overall understanding of the prevalence of self-splicing or the factors that determine it among the >2300 group I introns sequenced to date. Here, the self-splicing activities of 12 group I introns from various organisms were assayed under six reaction conditions that had been shown previously to promote RNA catalysis for different RNAs. Besides revealing that assessing self-splicing under only one condition can be misleading, this survey emphasizes that in vitro self-splicing efficiency is correlated with the GC content of the intron (>35% GC was generally conductive to self-splicing), and with the ability of the introns to form particular tertiary interactions. Addition of the Neurospora crassa CYT-18 protein activated splicing of two nonself-splicing introns, but inhibited the second step of self-splicing for two others. Together, correlations between sequence, predicted structure and splicing begin to establish rules that should facilitate our ability to predict the self-splicing activity of any group I intron from its sequence.  相似文献   

15.
Nuclear group I introns are parasitic mobile genetic elements occurring in the ribosomal RNA genes of a large variety of microbial eukaryotes. In Acanthamoeba, group I introns were found occurring in the 18S rDNA at four distinct insertion sites. Introns are present as single elements in various strains belonging to four genotypes, T3 (A. griffini), T4 (A. castellanii complex), T5 (A. lenticulata) and T15 (A. jacobsi). While multiple introns can frequently be found in the rDNA of several algae, fungi and slime moulds, they are usually rare and present as single elements in amoebae. We reported herein the characterization of an A. lenticulata strain containing two introns in its 18S rDNA. They are located to already known sites and show basal relationships with respective homologous introns present in the other T5 strains. This is the first and unique reported case of multiple nuclear introns in Acanthamoeba.  相似文献   

16.
17.
Intron-binding proteins in eukaryotic organelles are mainly encoded by the nuclear genome and are thought to promote the maturation of precursor RNAs. Here, we present a biochemical approach that enable the isolation of a novel nuclear-encoded protein from Chlamydomonas reinhardtii showing specific binding properties to organelle group II intron RNA. Using FPLC chromatography of chloroplast protein extracts, a 61-kDa RNA-binding protein was isolated and then tentatively identified by mass spectrometry as the chloroplast heat shock protein Cpn60. Heterologous Cpn60 protein was used in RNA protein gel mobility shift assays and revealed that the ATPase domains of Cpn60 mediates the specific binding of two group II intron RNAs, derived from the homologous chloroplast psaA gene and the heterologous mitochondrial LSU rRNA gene. The function of Cpn60 as a general organelle splicing factor is discussed.  相似文献   

18.
19.
Chloroplast RNA splicing 2 (CRS2) is a nuclear-encoded protein required for the splicing of nine group II introns in maize chloroplasts. CRS2 functions in the context of splicing complexes that include one of two CRS2-associated factors (CAF1 and CAF2). The CRS2-CAF1 and CRS2-CAF2 complexes are required for the splicing of different subsets of CRS2-dependent introns, and they bind tightly and specifically to their genetically defined intron targets in vivo. The CRS2 amino acid sequence is closely related to those of bacterial peptidyl-tRNA hydrolases (PTHs). To identify the structural differences between CRS2 and bacterial PTHs responsible for CRS2's gains of CAF binding and intron splicing functions, we determined the structure of CRS2 by X-ray crystallography. The fold of CRS2 is the same as that of Escherichia coli PTH, but CRS2 has two surfaces that differ from the corresponding surfaces in PTH. One of these is more hydrophobic in CRS2 than in PTH. Site-directed mutagenesis of this surface blocked CRS2-CAF complex formation, indicating that it is the CAF binding site. The CRS2 surface corresponding to the putative tRNA binding face of PTH is considerably more basic than in PTH, suggesting that CRS2 interacts with group II intron substrates via this surface. Both the sequence and the structural context of the amino acid residues essential for peptidyl-tRNA hydrolase activity are conserved in CRS2, yet expression of CRS2 is incapable of rescuing a pth(ts)E.coli strain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号