首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Complete or partial congenital absence of hair (congenital alopecia) may occur either in isolation or with associated defects. The majority of families with isolated congenital alopecia has been reported to follow an autosomal-recessive mode of inheritance (MIM 203655). As yet, no gene has been linked to isolated congenital alopecia, nor has linkage been established to a specific region of the genome. In an attempt to map the gene for the autosomal recessive form of the disorder, we have performed genetic linkage analysis on a large inbred Pakistani family in which affected persons show complete absence of hair development (universal congenital alopecia). We have analyzed individuals of this family, using >175 microsatellite polymorphic markers of the human genome. A maximum LOD score of 7.90 at a recombination fraction of 0 has been obtained with locus D8S258. Haplotype analysis of recombination events localized the disease to a 15-cM region between marker loci D8S261 and D8S1771. We have thus mapped the gene for this hereditary form of isolated congenital alopecia to a locus on chromosome 8p21-22 (ALUNC [alopecia universalis congenitalis]). This will aid future identification of the responsible gene, which will be extremely useful for the understanding of the biochemistry of hair development.  相似文献   

4.
We report on a consanguineous Pakistani family with a severe congenital microcephaly syndrome resembling the Seckel syndrome and Jawad syndrome. The affected individuals in this family were born to consanguineous parents of whom the mother presented with mild intellectual disability (ID), epilepsy and diabetes mellitus. The two living affected brothers presented with microcephaly, white matter disease of the brain, hyponychia, dysmorphic facial features with synophrys, epilepsy, diabetes mellitus and ID. Genotyping with a 250K SNP array in both affected brothers revealed an 18 MB homozygous region on chromosome 18p11.21-q12.1 encompassing the SCKL2 locus of the Seckel and Jawad syndromes. Sequencing of the RBBP8 gene, underlying the Seckel and Jawad syndromes, identified the novel mutation c.919A > G, p.Arg307Gly, segregating in a recessive manner in the family. In addition, in the two affected brothers and their mother we have also found a heterozygous 607 kb deletion, encompassing exons 13–19 of NRXN1. Bidirectional sequencing of the coding exons of NRXN1 did not reveal any other mutation on the other allele. It thus appears that the phenotype of the mildly affected mother can be explained by the NRXN1 deletion, whereas the more severe and complex microcephalic phenotype of the two affected brothers is due to the simultaneous deletion in NRXN1 and the homozygous missense mutation affecting RBBP8.  相似文献   

5.
The DFNB79 locus harbors TPRN mutations in which have been reported in a few families with deafness. Four frameshift mutations in TPRN have been described to cause severe or severe-to-profound hearing loss in Moroccan and Pakistani families, and a single frameshift mutation was associated with progressive hearing loss in deaf individuals in a Dutch family. We identified a Pakistani family in which the affected individuals were homozygous for a pathogenic mutation, c.42_52del11, in TPRN (p.G15Afs150X). In contrast to the previously reported individuals affected by the same mutation, hearing loss is likely to be progressive in this family. Thus the same mutation of TPRN can be associated with different thresholds of hearing as well as differences in the stability of the phenotype.  相似文献   

6.
Autosomal-recessive inheritance is believed to be relatively common in mental retardation (MR), although only four genes for nonsyndromic autosomal-recessive mental retardation (ARMR) have been reported. In this study, we ascertained a consanguineous Pakistani family with ARMR in four living individuals from three branches of the family, plus an additional affected individual later identified as a phenocopy. Retinitis pigmentosa was present in affected individuals, but no other features suggestive of a syndromic form of MR were found. We used Affymetrix 500K microarrays to perform homozygosity mapping and identified a homozygous and haploidentical region of 11.2 Mb on chromosome 4p15.33-p15.2. Linkage analysis across this region produced a maximum two-point LOD score of 3.59. We sequenced genes within the critical region and identified a homozygous splice-site mutation segregating in the family, within a coiled-coil and C2 domain-containing gene, CC2D2A. This mutation leads to the skipping of exon 19, resulting in a frameshift and a truncated protein lacking the C2 domain. Conservation analysis for CC2D2A suggests a functional domain near the C terminus as well as the C2 domain. Preliminary functional studies of CC2D2A suggest a possible role in Ca(2+)-dependent signal transduction. Identifying the function of CC2D2A, and a possible common pathway with CC2D1A, in correct neuronal development and functioning may help identify possible therapeutic targets for MR.  相似文献   

7.
A genome wide linkage analysis of nonsyndromic deafness segregating in a consanguineous Pakistani family (PKDF537) was used to identify DFNB63, a new locus for congenital profound sensorineural hearing loss. A maximum two-point lod score of 6.98 at θ = 0 was obtained for marker D11S1337 (68.55 cM). Genotyping of 550 families revealed three additional families (PKDF295, PKDF702 and PKDF817) segregating hearing loss linked to chromosome 11q13.2-q13.3. Meiotic recombination events in these four families define a critical interval of 4.81 cM bounded by markers D11S4113 (68.01 cM) and D11S4162 (72.82 cM), and SHANK2, FGF-3, TPCN2 and CTTN are among the candidate genes in this interval. Positional identification of this deafness gene should reveal a protein necessary for normal development and/or function of the auditory system.  相似文献   

8.
Mental retardation/intellectual disability is a devastating neurodevelopmental disorder with serious impact on affected individuals and their families, as well as on health and social services. It occurs with a prevalence of ∼2%, is an etiologically heterogeneous condition, and is frequently the result of genetic aberrations. Autosomal-recessive forms of nonsyndromic MR (NS-ARMR) are believed to be common, yet only five genes have been identified. We have used homozygosity mapping to search for the gene responsible for NS-ARMR in a large Pakistani pedigree. Using Affymetrix 5.0 single nucleotide polymorphism (SNP) microarrays, we identified a 3.2 Mb region on 8q24 with a continuous run of 606 homozygous SNPs shared among all affected members of the family. Additional genotype data from microsatellite markers verified this, allowing us to calculate a two-point LOD score of 5.18. Within this region, we identified a truncating homozygous mutation, R475X, in exon 7 of the gene TRAPPC9. In a second large NS-ARMR/ID family, previously linked to 8q24 in a study of Iranian families, we identified a 4 bp deletion within exon 14 of TRAPPC9, also segregating with the phenotype and truncating the protein. This gene encodes NIK- and IKK-β-binding protein (NIBP), which is involved in the NF-κB signaling pathway and directly interacts with IKK-β and MAP3K14. Brain magnetic resonance imaging of affected individuals indicates the presence of mild cerebral white matter hypoplasia. Microcephaly is present in some but not all affected individuals. Thus, to our knowledge, this is the sixth gene for NS-ARMR to be discovered.  相似文献   

9.
G Keyeux  G Lefranc  M P Lefranc 《Genomics》1989,5(3):431-441
A simultaneous absence of the IgG1, IgG2, IgG4, and IgA1 immunoglobulins (Ig) was unambiguously demonstrated in six healthy individuals of two different families (family HASS and family TOU). These individuals were shown to be homozygous for a large deletion in the immunoglobulin heavy chain constant region locus. This deletion, which encompasses the G1-EP1-A1-GP-G2-G4 genes, allowed us to predict an order for the IgCH genes and to localize GP between A1 and G2. In this paper, we study the deletion-recombination point in the IGH locus of individual EZZ from the TOU family. We show that the distance between the G3 and the E genes on the EZZ recombinant chromosome is 24.7 kb and that the multigene deletion in the IgCH locus involves two highly homologous regions (hsg3 and hsg4) which are hot spots of recombination, outside of the switch sequences.  相似文献   

10.
The DFNB74 locus for autosomal-recessive, nonsyndromic deafness segregating in three families was previously mapped to a 5.36 Mb interval on chromosome 12q14.2-q15. Subsequently, we ascertained five additional consanguineous families in which deafness segregated with markers at this locus and refined the critical interval to 2.31 Mb. We then sequenced the protein-coding exons of 18 genes in this interval. The affected individuals of six apparently unrelated families were homozygous for the same transversion (c.265T>G) in MSRB3, which encodes a zinc-containing methionine sulfoxide reductase B3. c.265T>G results in a substitution of glycine for cysteine (p.Cys89Gly), and this substitution cosegregates with deafness in the six DFNB74 families. This cysteine residue of MSRB3 is conserved in orthologs from yeast to humans and is involved in binding structural zinc. In vitro, p.Cys89Gly abolished zinc binding and MSRB3 enzymatic activity, indicating that p.Cys89Gly is a loss-of-function allele. The affected individuals in two other families were homozygous for a transition mutation (c.55T>C), which results in a nonsense mutation (p.Arg19X) in alternatively spliced exon 3, encoding a mitochondrial localization signal. This finding suggests that DFNB74 deafness is due to a mitochondrial dysfunction. In a cohort of 1,040 individuals (aged 53–67 years) of European ancestry, we found no association between 17 tagSNPs for MSRB3 and age-related hearing loss. Mouse Msrb3 is expressed widely. In the inner ear, it is found in the sensory epithelium of the organ of Corti and vestibular end organs as well as in cells of the spiral ganglion. Taken together, MSRB3-catalyzed reduction of methionine sulfoxides to methionine is essential for hearing.  相似文献   

11.
In an inbred Iraqi Jewish family, we have studied three siblings with presenile cataract first noticed between the ages of 20 and 51 years and segregating in an autosomal recessive mode. Using microsatellite repeat markers in close proximity to 25 genes and loci previously associated with congenital cataracts in humans and mice, we identified five markers on chromosome 19q that cosegregated with the disease. Sequencing of LIM2, one of two candidate genes in this region, revealed a homozygous T-->G change resulting in a phenylalanine-to-valine substitution at position 105 of the protein. To our knowledge, this constitutes the first report, in humans, of cataract formation associated with a mutation in LIM2. Studies of late-onset single-gene cataracts may provide insight into the pathogenesis of the more common age-related cataracts.  相似文献   

12.
Frank-Ter Haar syndrome (FTHS), also known as Ter Haar syndrome, is an autosomal-recessive disorder characterized by skeletal, cardiovascular, and eye abnormalities, such as increased intraocular pressure, prominent eyes, and hypertelorism. We have conducted homozygosity mapping on patients representing 12 FTHS families. A locus on chromosome 5q35.1 was identified for which patients from nine families shared homozygosity. For one family, a homozygous deletion mapped exactly to the smallest region of overlapping homozygosity, which contains a single gene, SH3PXD2B. This gene encodes the TKS4 protein, a phox homology (PX) and Src homology 3 (SH3) domain-containing adaptor protein and Src substrate. This protein was recently shown to be involved in the formation of actin-rich membrane protrusions called podosomes or invadopodia, which coordinate pericellular proteolysis with cell migration. Mice lacking Tks4 also showed pronounced skeletal, eye, and cardiac abnormalities and phenocopied the majority of the defects associated with FTHS. These findings establish a role for TKS4 in FTHS and embryonic development. Mutation analysis revealed five different homozygous mutations in SH3PXD2B in seven FTHS families. No SH3PXD2B mutations were detected in six other FTHS families, demonstrating the genetic heterogeneity of this condition. Interestingly however, dermal fibroblasts from one of the individuals without an SH3PXD2B mutation nevertheless expressed lower levels of the TKS4 protein, suggesting a common mechanism underlying disease causation.  相似文献   

13.
We performed genome-wide homozygosity mapping in a large consanguineous family from Morocco and mapped the autosomal-recessive nonsyndromic hearing loss (ARNSHL) in this family to the DFNB79 locus on chromosome 9q34. By sequencing of 62 positional candidate genes of the critical region, we identified a causative homozygous 11 bp deletion, c.42_52del, in the TPRN gene in all seven affected individuals. The deletion is located in exon 1 and results in a frameshift and premature protein truncation (p.Gly15AlafsX150). Interestingly, the deleted sequence is part of a repetitive and CG-rich motive predicted to be prone to structural aberrations during crossover formation. We identified another family with progressive ARNSHL linked to this locus, whose affected members were shown to carry a causative 1 bp deletion (c.1347delG) in exon 1 of TPRN. The function of the encoded protein, taperin, is unknown; yet, partial homology to the actin-caping protein phostensin suggests a role in actin dynamics.  相似文献   

14.
Juvenile-onset cataracts are distinguished from congenital cataracts by the initial clarity of the lens at birth and the gradual development of lens opacity in the second and third decades of life. Genomewide linkage analysis in a multigenerational pedigree, segregating for autosomal dominant juvenile-onset cataracts, identified a locus in chromosome region 3q21.2-q22.3. Because of the proximity of the gene coding for lens beaded filament structural protein-2 (BFSP2) to this locus, we screened for mutations in the coding sequence of BFSP2. We observed a unique C-->T transition, one that was not observed in 200 normal chromosomes. We predicted that this led to a nonconservative R287W substitution in exon 4 that cosegregated with cataracts. This mutation alters an evolutionarily conserved arginine residue in the central rod domain of the intermediate filament. On consideration of the proposed function of BFSP2 in the lens cytoskeleton, it is likely that this alteration is the cause of cataracts in the members of the family we studied. This is the first example of a mutation in a noncrystallin structural gene that leads to a juvenile-onset, progressive cataract.  相似文献   

15.
Mujtaba G  Bukhari I  Fatima A  Naz S 《Gene》2012,504(1):98-101
Mutations in PJVK, encoding Pejvakin, cause autosomal recessive nonsyndromic hearing loss in humans at the DFNB59 locus on chromosome 2q31.2. Pejvakin is involved in generating auditory and neural signals in the inner ear. We have identified a consanguineous Pakistani family segregating sensorineural progressive hearing loss as a recessive trait, consistent with linkage to DFNB59. We sequenced PJVK and identified a novel missense mutation, c.1028G>C in exon 7 (p.C343S) co-segregating with the phenotype in the family. The p.C343 residue is fully conserved among orthologs from different vertebrate species. We have also determined that mutations in PJVK are not a common cause of hearing loss in families with moderate to severe hearing loss in Pakistan. This is the first report of PJVK mutation in a Pakistani family and pinpoints an important residue for PJVK function.  相似文献   

16.
Already 40 genes have been identified for autosomal-recessive nonsyndromic hearing impairment (arNSHI); however, many more genes are still to be identified. In a Dutch family segregating arNSHI, homozygosity mapping revealed a 2.4 Mb homozygous region on chromosome 11 in p15.1-15.2, which partially overlapped with the previously described DFNB18 locus. However, no putative pathogenic variants were found in USH1C, the gene mutated in DFNB18 hearing impairment. The homozygous region contained 12 additional annotated genes including OTOG, the gene encoding otogelin, a component of the tectorial membrane. It is thought that otogelin contributes to the stability and strength of this membrane through interaction or stabilization of its constituent fibers. The murine orthologous gene was already known to cause hearing loss when defective. Analysis of OTOG in the Dutch family revealed a homozygous 1 bp deletion, c.5508delC, which leads to a shift in the reading frame and a premature stop codon, p.Ala1838ProfsX31. Further screening of 60 unrelated probands from Spanish arNSHI families detected compound heterozygous OTOG mutations in one family, c.6347C>T (p.Pro2116Leu) and c. 6559C>T (p.Arg2187X). The missense mutation p.Pro2116Leu affects a highly conserved residue in the fourth von Willebrand factor type D domain of otogelin. The subjects with OTOG mutations have a moderate hearing impairment, which can be associated with vestibular dysfunction. The flat to shallow “U” or slightly downsloping shaped audiograms closely resembled audiograms of individuals with recessive mutations in the gene encoding α-tectorin, another component of the tectorial membrane. This distinctive phenotype may represent a clue to orientate the molecular diagnosis.  相似文献   

17.
In guanosine diphosphate (GDP)-mannose pyrophosphorylase A (GMPPA), we identified a homozygous nonsense mutation that segregated with achalasia and alacrima, delayed developmental milestones, and gait abnormalities in a consanguineous Pakistani pedigree. Mutations in GMPPA were subsequently found in ten additional individuals from eight independent families affected by the combination of achalasia, alacrima, and neurological deficits. This autosomal-recessive disorder shows many similarities with triple A syndrome, which is characterized by achalasia, alacrima, and variable neurological deficits in combination with adrenal insufficiency. GMPPA is a largely uncharacterized homolog of GMPPB. GMPPB catalyzes the formation of GDP-mannose, which is an essential precursor of glycan moieties of glycoproteins and glycolipids and is associated with congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-dystroglycan. Surprisingly, GDP-mannose pyrophosphorylase activity was unchanged and GDP-mannose levels were strongly increased in lymphoblasts of individuals with GMPPA mutations. This suggests that GMPPA might serve as a GMPPB regulatory subunit mediating feedback inhibition of GMPPB instead of displaying catalytic enzyme activity itself. Thus, a triple-A-like syndrome can be added to the growing list of congenital disorders of glycosylation, in which dysregulation rather than mere enzyme deficiency is the basal pathophysiological mechanism.  相似文献   

18.
Congenital cataracts (CCs), responsible for about one-third of blindness in infants, are a major cause of vision loss in children worldwide. Autosomal-recessive congenital cataracts (arCC) form a clinically diverse and genetically heterogeneous group of disorders of the crystalline lens. To identify the genetic cause of arCC in consanguineous Pakistani families, we performed genome-wide linkage analysis and fine mapping and identified linkage to 3p21-p22 with a summed LOD score of 33.42. Mutations in the gene encoding FYVE and coiled-coil domain containing 1 (FYCO1), a PI(3)P-binding protein family member that is associated with the exterior of autophagosomes and mediates microtubule plus-end-directed vesicle transport, were identified in 12 Pakistani families and one Arab Israeli family in which arCC had previously been mapped to the overlapping CATC2 region. Nine different mutations were identified, including c.3755 delC (p.Ala1252AspfsX71), c.3858_3862dupGGAAT (p.Leu1288TrpfsX37), c.1045 C>T (p.Gln349X), c.2206C>T (p.Gln736X), c.2761C>T (p.Arg921X), c.2830C>T (p.Arg944X), c.3150+1 G>T, c.4127T>C (p.Leu1376Pro), and c.1546C>T (p.Gln516X). Fyco1 is expressed in the mouse embryonic and adult lens and peaks at P12d. Expressed mutant proteins p.Leu1288TrpfsX37 and p.Gln736X are truncated on immunoblots. Wild-type and p.L1376P FYCO1, the only missense mutant identified, migrate at the expected molecular mass. Both wild-type and p. Leu1376Pro FYCO1 proteins expressed in human lens epithelial cells partially colocalize to microtubules and are found adjacent to Golgi, but they primarily colocalize to autophagosomes. Thus, FYCO1 is involved in lens development and transparency in humans, and mutations in this gene are one of the most common causes of arCC in the Pakistani population.  相似文献   

19.
20.
Healthy dental enamel is the hardest and most highly mineralized human tissue. Though acellular, nonvital, and without capacity for turnover or repair, it can nevertheless last a lifetime. Amelogenesis imperfecta (AI) is a collective term for failure of normal enamel development, covering diverse clinical phenotypes that typically show Mendelian inheritance patterns. One subset, known as hypomaturation AI, is characterised by near-normal volumes of organic enamel matrix but with weak, creamy-brown opaque enamel that fails prematurely after tooth eruption. Mutations in genes critical to enamel matrix formation have been documented, but current understanding of other key events in enamel biomineralization is limited. We investigated autosomal-recessive hypomaturation AI in a consanguineous Pakistani family. A whole-genome SNP autozygosity screen identified a locus on chromosome 15q21.3. Sequencing candidate genes revealed a point mutation in the poorly characterized WDR72 gene. Screening of WDR72 in a panel of nine additional hypomaturation AI families revealed the same mutation in a second, apparently unrelated, Pakistani family and two further nonsense mutations in Omani families. Immunohistochemistry confirmed intracellular localization in maturation-stage ameloblasts. WDR72 function is unknown, but as a putative β propeller is expected to be a scaffold for protein-protein interactions. The nearest homolog, WDR7, is involved in vesicle mobilization and Ca2+-dependent exocytosis at synapses. Vesicle trafficking is important in maturation-stage ameloblasts with respect to secretion into immature enamel and removal of cleaved enamel matrix proteins via endocytosis. This raises the intriguing possibility that WDR72 is critical to ameloblast vesicle turnover during enamel maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号