首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(A) polymerase activity was first detected in yeast extracts, primarily in association with the ribosomal fraction, by Twu and Bretthauer in 1971 (Twu, J. S., and Bretthauer, RK. (1971) Biochemistry 10, 1576-1582). This activity has now been separated into three distinct enzymes by chromatography on DEAE-cellulose. Each of the three enzymes can catalyze the incorporation of adenylate residues from ATP into a polyadenylate (poly(A)) tract at the 3' terminus of a primer RNA. Enzyme I elutes at 0.07 M ammonium sulfate from the DEAE-cellulose column, utilizes the mixed polynucleotide poly(A,G,C,U) or ribosomal RNA most efficiently in vitro, and may be responsible in vivo for the initiation of the poly(A) tracts found on yeast messenger RNA. Enzyme II elutes from the column at 0.20 M ammonium sulfate, requires poly(A) itself or an RNA primer containing a 3'-oligo(A) tract, and may be responsible in the nucleus for the elongation of tracts initiated by enzyme I. Enzyme III elutes from the column at 0.56 M ammonium sulfate and is present in low amounts in nuclear extracts. It may be involved in adding poly(A) tracts to messenger RNA in mitochondria. These enzymes also have the intrinsic capacity for the incorporation of cytidylate residues from CTP, which correlates with the finding of cytidylate residues in the poly(A) tracts present in the yeast RNA which is rapidly labeled in vivo. About 75% of the total poly(A) polymerase activity of yeast is enzyme I, most of which is present in the soluble protein fraction of the whole yeast extract. About 20% of the total poly(A) polymerase is enzyme II, and 1 to 5% is enzyme III. All three of the yeast poly(A) polymerases require an RNA primer with a free 3'-hydroxyl group, show no requirement for a DNA template, require Mn-2+ for optimal activity, have pH optima of 8.5, and are inhibited by GTP, CTP, UTP, and native yeast DNA. Polymerases I and II have similar molecular weights by gel filtration.  相似文献   

2.
Fission yeast Cid13 and budding yeast Trf4/5 are members of a newly identified nucleotidyltransferase family conserved from yeast to man. Trf4/5 are thought to be essential DNA polymerases. We report that Cid13 is a poly(A) polymerase. Unlike conventional poly(A) polymerases, which act in the nucleus and indiscriminately polyadenylate all mRNA, Cid13 is a cytoplasmic enzyme that specifically targets suc22 mRNA that encodes a subunit of ribonucleotide reductase (RNR). cid13 mutants have reduced dNTP pools and are sensitive to hydroxyurea, an RNR inhibitor. We propose that Cid13 defines a cytoplasmic form of poly(A) polymerase important for DNA replication and genome maintenance.  相似文献   

3.
Previous studies in this laboratory have identified two distinct nuclear poly(A) polymerases, a 48 kDA tumor type enzyme and a 36-38 kDA liver type enzyme. To investigate the tissue and species specificity of these enzymes, nuclear extracts were prepared from various rat tissues, pig brain and two human cell lines. These as well as whole cell extract from yeast were probed for the two enzymes by immunoblot analysis using polyclonal anti-tumor poly(A) polymerase antibodies or autoimmune sera which contain antibodies specific for the liver type enzyme. Results indicate that both tumor and liver type enzymes are conserved across species ranging from rat to human. The yeast enzyme does not appear to be immunologically related to the liver or the tumor type poly(A) polymerase. The liver type enzyme appears to be specific for normal tissues whereas the tumor type enzyme is detected only in tissues in a "tumorigenic" state or cell lines originating from tumor tissues.  相似文献   

4.
D A Stetler  S T Jacob 《Biochemistry》1985,24(19):5163-5169
Poly(A) polymerases were purified from the cytosol fraction of rat liver and Morris hepatoma 3924A and compared to previously purified nuclear poly(A) polymerases. Chromatographic fractionation of the hepatoma cytosol on a DEAE-Sephadex column yielded approximately 5 times as much poly(A) polymerase as was obtained from fractionation of the liver cytosol. Hepatoma cytosol contained a single poly(A) polymerase species [48 kilodaltons (kDa)] which was indistinguishable from the hepatoma nuclear enzyme (48 kDa) on the basis of CNBr cleavage maps. Liver cytosol contained two poly(A) polymerase species (40 and 48 kDa). The CNBr cleavage patterns of these two enzymes were distinct from each other. However, the cleavage pattern of the 40-kDa enzyme was similar to that of the major liver nuclear poly(A) polymerase (36 kDa), and approximately three-fourths of the peptide fragments derived from the 48-kDa species were identical with those from the hepatoma enzymes (48 kDa). NI-type protein kinases from liver or hepatoma stimulated hepatoma nuclear and cytosolic poly(A) polymerases 4-6-fold. In contrast, the liver cytosolic 40- and 48-kDa poly(A) polymerases were stimulated only slightly or inhibited by similar units of the protein kinases. Antibodies produced in rabbits against purified hepatoma nuclear poly(A) polymerase reacted equally well with hepatoma nuclear and cytosolic enzyme but only 80% as well with the liver cytosolic 48-kDa poly(A) polymerase and not at all with liver cytosolic 40-kDa or nuclear 36-kDa enzymes. Anti-poly(A) polymerase antibodies present in the serum of a hepatoma-bearing rat reacted with hepatoma nuclear and cytosolic poly(A) polymerases to the same extent but only 40% as well with the liver cytosolic 48-kDa enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
PAPD5 is one of the seven members of the family of noncanonical poly(A) polymerases in human cells. PAPD5 was shown to polyadenylate aberrant pre-ribosomal RNAs in vivo, similar to degradation-mediating polyadenylation by the noncanonical poly(A) polymerase Trf4p in yeast. PAPD5 has been reported to be also involved in the uridylation-dependent degradation of histone mRNAs. To test whether PAPD5 indeed catalyzes adenylation as well as uridylation of RNA substrates, we analyzed the in vitro properties of recombinant PAPD5 expressed in mammalian cells as well as in bacteria. Our results show that PAPD5 catalyzes the polyadenylation of different types of RNA substrates in vitro. Interestingly, PAPD5 is active without a protein cofactor, whereas its yeast homolog Trf4p is the catalytic subunit of a bipartite poly(A) polymerase in which a separate RNA-binding subunit is needed for activity. In contrast to the yeast protein, the C terminus of PAPD5 contains a stretch of basic amino acids that is involved in binding the RNA substrate.  相似文献   

6.
A family of poly(U) polymerases   总被引:5,自引:2,他引:3       下载免费PDF全文
The GLD-2 family of poly(A) polymerases add successive AMP monomers to the 3' end of specific RNAs, forming a poly(A) tail. Here, we identify a new group of GLD-2-related nucleotidyl transferases from Arabidopsis, Schizosaccharomyces pombe, Caenorhabditis elegans, and humans. Like GLD-2, these enzymes are template independent and add nucleotides to the 3' end of an RNA substrate. However, these new enzymes, which we refer to as poly(U) polymerases, add poly(U) rather than poly(A) to their RNA substrates.  相似文献   

7.
RNA-specific ribonucleotidyl transferases   总被引:3,自引:0,他引:3       下载免费PDF全文
Martin G  Keller W 《RNA (New York, N.Y.)》2007,13(11):1834-1849
RNA-specific nucleotidyl transferases (rNTrs) are a diverse family of template-independent polymerases that add ribonucleotides to the 3'-ends of RNA molecules. All rNTrs share a related active-site architecture first described for DNA polymerase beta and a catalytic mechanism conserved among DNA and RNA polymerases. The best known examples are the nuclear poly(A) polymerases involved in the 3'-end processing of eukaryotic messenger RNA precursors and the ubiquitous CCA-adding enzymes that complete the 3'-ends of tRNA molecules. In recent years, a growing number of new enzymes have been added to the list that now includes the "noncanonical" poly(A) polymerases involved in RNA quality control or in the readenylation of dormant messenger RNAs in the cytoplasm. Other members of the group are terminal uridylyl transferases adding single or multiple UMP residues in RNA-editing reactions or upon the maturation of small RNAs and poly(U) polymerases, the substrates of which are still not known. 2'-5'Oligo(A) synthetases differ from the other rNTrs by synthesizing oligonucleotides with 2'-5'-phosphodiester bonds de novo.  相似文献   

8.
9.
10.
The exosome is a protein complex consisting of a variety of 3′→5′ exoribonucleases that functions both in the processing of rRNA precursors and in the degradation of mRNA. A prokaryotic counterpart of the exosome known as the degradosome exists in bacteria and chloroplasts. Interestingly, RNA polyadenylation has been implicated in degradosome functioning, giving rise to the possibility of a similar role in exosome function. Using phosphorolytic breakdown of RNA as an assay, we have purified an exosome-like activity from pea nuclear extracts. This activity copurifies with at least one Arabidopsis exosome subunit homologue. Recombinant Arabidopsis poly(A) polymerase and purified chloroplast poly(A) polymerase can polyadenylate RNAs that copurify with the exosome-like activity, even though the quantity of this co-purifying RNA is well below the affinity of the PAPs for free RNA. These results suggest a role for polyadenylation in exosome function, perhaps analogous to the role that polyadenylation plays in facilitating RNA breakdown by the bacterial degradosome.  相似文献   

11.
12.
Quality control pathways for non-coding RNAs such as tRNAs and rRNAs are widespread. In both prokaryotes and eukaryotes, poly(A) polymerases target aberrant non-coding RNAs for degradation. In yeast, a nuclear complex that includes the poly(A) polymerase Trf4p works together with the exosome in degrading a broad array of non-coding RNAs, several of which are aberrant. Yeast also have additional pathways for the degradation of defective RNAs and other pathways may exist in higher eukaryotes. One possibility is that cells recognize specific, still undiscovered, features common to misfolded RNAs; however, an alternative is that RNA quality control proteins interact with relatively general RNA structures, whereas correctly folded RNAs are sequestered by specific RNA-binding proteins and thus protected from degradation. Recently available structures of protein and ribonucleoprotein complexes involved in non-coding RNA quality control are providing a more detailed understanding of this process.  相似文献   

13.
14.
The Saccharomyces cerevisiae Trf4 and Trf5 proteins are members of a distinct family of eukaryotic DNA polymerase beta-like nucleotidyltransferases, and a template-dependent DNA polymerase activity has been reported for Trf4. To define the nucleotidyltransferase activities associated with Trf4 and Tr5, we purified these proteins from yeast cells and show that whereas both proteins exhibit a robust poly(A) polymerase activity, neither of them shows any evidence of a DNA polymerase activity. The poly(A) polymerase activity, as determined for Trf4, is strictly Mn2+ dependent and highly ATP specific, incorporating AMP onto the free 3'-hydroxyl end of an RNA primer. Unlike the related poly(A) polymerases from other eukaryotes, which are located in the cytoplasm and regulate the stability and translation efficiency of specific mRNAs, the Trf4 and Trf5 proteins are nuclear, and a multiprotein complex associated with Trf4 has been recently shown to polyadenylate a variety of misfolded or inappropriately expressed RNAs which activate their degradation by the exosome. To account for the effects of Trf4/Trf5 proteins on the various aspects of DNA metabolism, including chromosome condensation, DNA replication, and sister chromatid cohesion, we suggest an additional and essential role for the Trf4 and Trf5 protein complexes in generating functional mRNA poly(A) tails in the nucleus.  相似文献   

15.
Ethionine intoxication causes a change in the metabolism of poly(A) sequences on the 3' OH terminus of mRNA in rat liver in vivo. In an attempt to determine the factors responsible for these changes, nuclear and cytoplasmic poly(A) polymerase activities and the state of the primer were examined in vitro. Requirements for optimal enzyme activities were determined. The nuclear and cytoplasmic enzymes had different K+, Mn2+, and poly(A) primer optima. The levels of nuclear and cytoplasmic poly(A) polymerase activity were shown to decrease following ethionine intoxication. Poly(A)+ RNA isolated from the livers of saline- and ethionine-treated rats served equally well as primers for the cytoplasmic poly(A) polymerase.Disaggregated polysomes were seven times more effective as primers than were intact polysomes. The results suggest that the mRNP particle which is released from polysomes as a result of ethionine intoxication functions better as a poly(A) polymerase primer than does the intact polysome.  相似文献   

16.
The MIP1 gene which encodes yeast mitochondrial DNA polymerase possesses in its N-terminal region the three motifs (Exo1, Exo2 and Exo3) which characterize the 3'-5' exonucleolytic domain of many DNA polymerases. By site directed mutagenesis we have substituted alanine or glycine residues for conserved aspartate residues in each consensus sequence. Yeast mutants were therefore generated that are capable of replicating mitochondrial DNA (mtDNA) and exhibit a mutator phenotype, as estimated by the several hundred-fold increase in the frequency of spontaneous mitochondrial erythromycin resistant mutants. By overexpressing the mtDNA polymerase from the GAL1 promoter as a major 140 kDa polypeptide, we showed that the wild-type enzyme possesses a mismatch-specific 3'-5' exonuclease activity. This activity was decreased by approximately 500-fold in the mutant D347A; in contrast, the extent of DNA synthesis was only slightly decreased. The wild-type mtDNA polymerase efficiently catalyses elongation of singly-primed M13 DNA to the full-length product. However, the mutant preferentially accumulates low molecular weight products. These data were extended to the two other mutators D171G and D230A. Glycine substitution for the Cys344 residue which is present in the Exo3 site of several polymerases generates a mutant with a slightly higher mtDNA mutation rate and a slightly lower 3'-5' exonucleolytic activity. We conclude that proofreading is an important determinant of accuracy in the replication of yeast mtDNA.  相似文献   

17.
The enzymatic and physiochemical properties of poly(A) polymerases IIA and IIB from cultured hamster fibroblasts were investigated. The enzymes show an absolute requirement for Mn2+ as the divalent ion. Although Mg2+ alone is inactive, maximum activity is observed in the presence of both Mn2+ and Mg2+. An optimal pH of approx. 8 is found for polymerases IIA and IIB. The enzymes, however, differ somewhat in the pH curves as well as in the Mn2+ and Mg2+ concentration curves. Poly(A) polymerases IIA and IIB have an isoelectric point of about 6 and a sedimentation coefficient of 3.5--4 S. The molecular weights, obtained by gel filtration chromatography, are 145 000 and 155 000 for enzymes IIA and IIB, respectively. Poly(A) polymerases IIA and IIB can utilize a variety of natural and synthetic RNAs as well as DNA as primers. Poly(A) polymerase IIA is saturated at much lower concentrations of primer than enzyme IIB. On the other hand, the chain length of the product synthesized by polymerase IIA is independent of the primer concentration, whereas, with polymerase IIB, the length of the product decreases when the concentration of RNA is increased.  相似文献   

18.
19.
Three distinct DNA-dependent DNA polymerase activities have been partially purified from normal rat liver. Soluble activities are separable into two distinct fractions (P1 and P2) by phosphocellulose chromatography. A low-molecular-weight DNA polymerase was isolated from purified nuclei. The enzymes were characterized according to chromatographic and sedimentation behavior, enzymological properties, and response to various inhibitors. The results indicate that fraction P1 corresponds to the high-molecular-weight enzyme and suggest that polymerase P2 may be derived from partial dissociation of the high-molecular-weight enzyme. The molecular weight of polymerase P1 was estimated to be about 250 000 by Sephadex column chromatography. Both fraction P2 and nuclear DNA polymerase appeared to be low-molecular-weight enzymes. However, the molecular size of these activities was apparently different. The estimated molecular weights of nuclear and P2 enzyme are about 40 000 and 25 000, respectively. As with the nuclear enzyme, polymerase P2 (but not P1) appeared to be free of detectable exonuclease activity. All of these polymerases showed a marked preference for initiated polydeoxyribonucleotide templates. The rat liver polymerases differed in their ability to use poly[d(A-T)-A1 primer-template, as is shown by the ratios of their activity with this synthetic polymer to that with activated DNA: 0.5, 2.75, and 1.34 for P1, P2, and nuclear polymerase, respectively. Denatured DNA was a poor template for both enzymes P1 and P2, but it was inert as template for the nuclear enzyme. Although each of these polymerases required all four deoxynucleoside triphosphates for maximal activity, they catalyzed a high rate of synthesis in the absence of one or more deoxynucleoside triphosphates. Such a 'limited' synthesis was much more extensive for polymerase P2 and nuclear enzyme than for P1 was the most sensitive of the three to sulphydryl reagents, ehtidium bromide, heparin, and single-stranded DNA. The responses of P2 and nuclear enzymes to various inhibitors were very similar. However, these two enzymes respond differently to heat and high ionic strength.  相似文献   

20.
Three nuclear RNA polymerases and one poly(A) polymerase were isolated from the yeast, Saccharomyces cerevisiae. The ability of cordycepin triphosphate to inhibit each was determined. RNA polymerase II was significantly more sensitive to this compound than the other polymerases. RNA polymerase I was relatively insensitive, being inhibited less than 20% by 40 μm cordycepin triphosphate. The calculated apparent Ki values of RNA polymerases II and III and poly(A) polymerase were, respectively, 0.3, 3.0, and 4.6 μm. Inhibition was competitive with regard to ATP. These data do not support the idea that, in yeast, poly(A) addition to preformed RNA in vivo is the primary site of cordycepin action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号