首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The decomposition of deciduous leaf material provides a critical source of energy to aquatic food webs. Changes to riparian forests through harvesting practices may alter the species composition of deciduous leaf material entering streams. We compared over-winter decomposition of three different riparian leaf species (speckled alder (Alnus incana ssp. rugosa (Du Roi) J. Clausen), white birch (Betula papyrifera Marsh.), and trembling aspen (Populus tremuloides Michx.)) to determine their importance as a food resource for macroinvertebrate communities within Boreal Shield streams in northeastern Ontario, Canada. Leaf pack decomposition of the three leaf species formed a processing continuum throughout winter, where alder and birch leaf packs decomposed at a medium rate (k = 0.0065/day and 0.0053/day, respectively) and aspen leaf packs decomposed more slowly (k = 0.0035/day). Macroinvertebrate community colonization on leaf packs changed through time regardless of leaf species. Alder leaf packs supported higher abundances of macroinvertebrates in the fall while aspen leaf packs supported greater shredder abundances in the following spring. The study shows that leaf diversity may be important for providing a sustained food resource for aquatic macroinvertebrates throughout the relatively long over-winter period in Canadian Boreal Shield streams. Riparian forest management strategies should ensure that deciduous plant species richness is sustained in riparian areas.  相似文献   

2.
SUMMARY.
  • 1 Communities of invertebrates colonizing senescent autumn and fresh summer alder leaves (Alnus rugosa) were compared. Leaf packs for each treatment were placed in two hardwater streams in the Upper Peninsula of Michigan in late summer and early autumn. One stream has a cobble-bottom and the other a sand-bottom and both receive fresh leaf inputs by beaver fellings.
  • 2 Fresh leaf packs remained intact after 26 days immersion, but thereafter were processed faster than were the autumn leaf packs in both streams.
  • 3 In the cobble-bottom stream taxon richness (S), numbers of individuals and biomass were higher on fresh than on autumn leaves.
  • 4 Fresh leaves in the sand-bottom stream supported a more diverse (H'), richer (S) and more equitably distributed (J') insect fauna than did the autumn leaves.
  • 5 We discuss the simultaneous lack of fresh leaf loss and the presence of more complex insect communities on those leaves during the first 26 days of the study. Invertebrates in both mid-latitude heterotrophic streams and in tropical lowland wet forest streams may rely on fresh leaf inputs, which have received little attention.
  相似文献   

3.
The breakdown of buried leaves (Eucalyptus viminalis) was investigated using surface-placed and buried leaf packs in a riffle of the Acheron River, Victoria. Leaf packs buried to a depth of 10 cm were rapidly colonized by invertebrates, with the total numbers of individuals and species exceeding those on surface leaf packs. A larger proportion of leaves in buried leaf packs was grazed in comparison with those on the surface, with the intensity of grazing also being higher for leaves in buried packs. Both surface and buried leaf packs broke down rapidly with no significant difference in weight loss with time. The high level of breakdown of buried E. viminalis leaf litter observed in this study suggests that the hyporheos of Australian headwater streams may significantly contribute to the decomposition of particulate organic matter.  相似文献   

4.
1. To characterise geographic and small scale variation in the structure of macroinvertebrate communities in stream leaf packs, we collected one to three natural leaf pack communities from 119 reference streams in the Fraser River Basin and quantified their variability and correlation with aspects of the stream environment at several scales. We also sampled leaf packs in 19 test streams in the same geographic area exposed to stressors (nine logged, seven farmed, three mined catchments) to evaluate the leaf pack community as a tool for bioassessment. 2. There was substantial variation in the composition of invertebrate communities in leaf packs among reference streams of the Fraser River Basin. Capnia and Zapada (stoneflies), Baetis and Ephemerella (mayflies) and Tvetnia (midge) were the most common taxa found in the leaf packs. There were three types of assemblages identified by non‐metric multidimensional scaling; Capnia, Baetis and Ephemerella communities. 3. Leaf pack communities from the 19 test streams were plotted on a non‐metric multidimensional scaling ordination of the reference communities, and 14 of 19 sites fell outside the 80% confidence ellipse of the reference sites, including eight of nine logged, four of seven farmed and one of three mined catchments. Most of these streams plotted on the ordination near the Ephemerella reference communities. Reference stream communities had a similar number of genera per leaf pack (12.0) and genera per site (18.7) as the test streams (12.6 genera per leaf pack and 18.7 genera per site). Among the test sites, the farmed catchments had higher genera per leaf pack (17.8) and genera per site (21.9) than either the logged (11.5 genera per leaf pack; 19.9 genera per site) or mined (3.4 genera per leaf pack; 7.7 genera per site) catchments. 4. Heterogeneity of leaf pack communities within a site decreased as the number of genera found at the site increased. This was determined by allometric regression of the number of genera found at a site on the maximum number of genera possible, given the average number found per leaf pack. 5. There was a significant relationship between the composition of the leaf pack invertebrate community and stream geography (latitude, longitude, altitude, stream order). Canonical correspondence analysis showed differences among ‘big river’, ‘mountain stream’ and ‘southern’ communities. 6. There was no relationship between the composition of the leaf pack invertebrate community and stream channel and flow characteristics (bank dimensions, flow, slope). There was a significant relationship between the composition of the leaf pack invertebrate community and water quality of the stream (oxygen, nitrogen, phosphorus, conductivity, pH, temperature). ‘Cold, oxygen rich water’ communities were distinguishable from communities in streams with warmer, lower oxygen concentration. ‘High nutrient water’ communities were also distinct from communities in low nutrient streams. There was no relationship between the composition of the leaf pack invertebrate community and the nature of the leaf pack itself (i.e. morphology, decomposition, coniferous needle content). 7. Invertebrate communities in leaf packs show substantial, interpretable variation among reference streams. They are sensitive to human stressors at a landscape scale such as forestry and agriculture. Their diversity and composition varies at different spatial scales in a way that is at least partially explained by the environment of the stream and its catchment area.  相似文献   

5.
1. Leaf packs in streams may serve as food and substrate to many macroinvertebrates, but the relative importance of these two functions has not been disentangled. To test the hypothesis that leaf packs are colonized primarily for their food value rather than as microhabitat, the colonization of leaf packs of red alder and of polyester cloth in a natural stream was compared. 2. Species of shredders showed large differences in the colonization of the two types of leaf pack with almost no use of artificial leaf packs. Non-shredders were also more abundant on natural leaf packs, however, they colonized artificial leaf packs six to eighty times proportionally more than shredders. 3. The effect of different leaf types was virtually eliminated for non-shredders when the amount of fine parriculate detritus (food for many non-shredders) trapped in the leaf pack was added to the analysis as a covariate. Therefore, to non-shredders, leaf types differed only in the retention of fine particulate organic matter. 4. Comparisons of the use of both kinds of leaf packs in riffles versus pools revealed that significantly fewer animals colonized pool leaf packs. 5. These results suggest that food value, and not microhabitat, is the primary determinant of leaf pack use for most shredders and non-shredders.  相似文献   

6.
Leaf breakdown in streams is affected by several factors, such as leaf characteristics, water chemistry, microbial activity, and abundance of shredders. In turn, shredders may be resource-controlled. We hypothesized that the size of litter patches affects leaf breakdown, because large patches should be stable over time and therefore harbor high densities of shredders. We selected litter patches (area 0.25–10 m2) in 10 pools of three first-order streams (Manaus, Brazil). We installed 10 leaf packs of Mabea speciosa (Euphorbiaceae) in each patch, and sampled one after 1 day and three after 5, 19, and 28 days. The leaf packs were quickly colonized by the shredding caddisflies Triplectides and Phylloicus. The leaf breakdown rate (mean k = 0.026 ± 0.0015 SE) was high and similar to values reported for other tropical and temperate streams, although much higher than values reported for the adjacent Cerrado biome. Assemblage composition varied over time, but was not related to the size of litter patches. Contrary to our hypothesis, litter patch area did not affect breakdown rates (r 2 = 0.012, P = 0.766) or abundance of shredders after 5, 19, and 28 days (r 2 < 0.243, P > 0.147). We found, however, a positive relationship between the abundance of tropical shredders and leaf breakdown after 19 days (r 2 = 0.572, P = 0.011), suggesting that shredders play an important role in leaf breakdown in these headwater streams. Our study indicates that leaf breakdown rates in tropical streams are variable and can be as high as those of temperate streams.  相似文献   

7.
Bioturbation can affect community structure by influencing resource distribution and habitat heterogeneity. Bioturbation by detritivores in small headwater streams could affect community structure by reintroducing buried detrital resources into the food web and could also affect the distribution of various taxa on detritus. We evaluated the ability of the caddisfly Pycnopsyche gentilis to uncover experimentally buried leaves in a headwater stream. Packs of leaves were placed in enclosures and covered with a known volume of sediment. We added 0, 3 or 6 large Pycnopsyche to the enclosures which were permeable to most other invertebrate taxa. Leaf packs were sampled after 23 days and leaf pack mass, the amount of sediment covering the leaf packs, and macro‐ and microinvertebrate densities on leaf packs were quantified. There was a significant negative relationship between Pycnopsyche density and leaf pack mass. Pycnopsyche also reduced the volume of sediment covering leaf packs. Pycnopsyche had complex effects on the abundance of invertebrate taxa associated with the leaves. Some taxa exhibited their highest abundance in the 3 Pycnopsyche treatment while others exhibited non‐significant increases as Pycnopsyche density increased. These results suggest that the beneficial effects of Pycnopsyche (e.g. uncovering leaves which increases the availability of habitat and food) outweigh any negative effects (e.g. disturbance, encounter competition) of the caddisfly when it is present at lower densities. However, the negative impacts of Pycnopsyche appear to outweigh the positive effects via sediment removal at higher caddisfly densities for some taxa. Our results suggest that bioturbating organisms in streams have the potential to reintroduce organic matter to detrital food webs and affect the distribution and abundance of benthic taxa associated with organic matter.  相似文献   

8.
K. S. Seshadri 《Biotropica》2014,46(5):615-623
Vast areas of tropical evergreen forests have been selectively logged in the past, and many areas continue to be logged. The impacts of such logging on amphibians are poorly understood. I examined the response of anuran communities to historical selective logging in a wet evergreen forest in south India. Anuran assemblages in unlogged forest were compared with assemblages in selectively logged forest. Forty 10 m × 10 m quadrats in forest, riparian zones, and streams of unlogged and selectively logged forests were searched at night for anurans. Species richness did not appear to be affected by logging. However, anuran density varied significantly and was 42 percent lower in selectively logged forests compared to unlogged forests. Anuran densities also varied significantly across microhabitats, with highest densities in streams of both selectively logged and unlogged forests. Patterns of niche overlap varied with selective logging as niche breadth either expanded, contracted, or remained neutral for different species. Ordination analysis explained 95 percent of the variation in species assemblage across selectively logged and unlogged forests. The assemblage in selectively logged forest was nested within unlogged forest. Among the habitat characteristics, litter thickness and water depth had the highest influence on the assemblage. This was followed by litter/water temperature, air temperature, and lastly relative humidity. It appears that species richness and composition of anurans in selectively logged forests is converging with unlogged forests, but the effects of historical logging seem to persist on anuran densities and their niche characteristics even ca 40 yr since logging ceased.  相似文献   

9.
Packs of autumn-shed maple leaves were placed at coal ash effluent-exposed and reference sites in streams on December 5, 1977 and removed after 27 and 96 days. Leaf surface area (cm2/leaf) and disc weight (ash-free dry wt/15 mm disc) were greater at the effluent-exposed site than at the reference site after 96 days (p < .001). ATP content of leaves from the reference stream quadrupled between 27 and 96 days while ATP content of effluent-exposed leaves remained low. Macroinvertebrates colonized the leaf packs in the reference site but were not found on or in effluent-exposed packs. We concluded that leaf processing beyond the leaching of soluble organics did not occur in the effluent-exposed packs owing to reduced colonization and decomposition by fungi. Since stream invertebrates prefer decomposed leaf material and animals grow faster on leaves colonized by microbes, the ash effuent appears to indirectly affect macroinvertebrates by interfering with leaf decomposition and thus reducing the quality of their food.  相似文献   

10.
Many of the protected forest areas in Uganda have been subject to logging in the past. It is known that logging changes communities, but how long these changes last is unclear. Most of the studies on butterflies and moths have looked at the effects of logging relatively shortly (<15 years) after the logging took place. In this study we investigated community of herbivorous lepidopteran larvae and its temporal dynamics in a natural forest and three differently managed forest compartments after 40 years of regeneration. We collected samples of larvae from the leaves of Neoboutonia macrocalyx Pax. between April 2006 and March 2008 in Kibale National Park, Western Uganda. Herbivory, density of larvae, and species richness were significantly lower in logged compartments than in natural forest. Furthermore, the community composition differed significantly between the logged compartments and the natural forest. There was seasonal variation in larval density, species richness and diversity. In species richness and diversity the variation was synchronous in all the study areas, but larval density did not vary synchronously across the compartments, probably due to the impact of logging on the environment. We also observed changes in the community composition during different seasons in all the study areas. We attribute the long term impact of logging to the hindered regeneration of logged compartments and recommend restoration activities to help to return the logged areas closer to the natural state.  相似文献   

11.
1. Leaf litter breakdown and associated invertebrates were compared among three logged and three reference stream reaches 2–3 years before and 3–4 years after logging to assess the environmental impacts of partial‐harvest logging as a novel riparian management strategy for boreal forest streams. 2. Partial‐harvest logging at three sites resulted in 10, 21 and 28% average basal area removal from riparian buffers adjacent to upland clear‐cut areas. 3. Leaf litter breakdown rates were not significantly different between reference and logged sites after logging, but litter breakdown was significantly different from year to year at all sites. 4. Significant post‐logging differences in aquatic invertebrate communities were detected at only one of the three logged sites. These differences were largely the result of increases in some leaf‐shredding stoneflies and a detritivorous mayfly and a decrease in a chironomid group 2–4 years after logging. This site where significant change was detected had the lowest intensity of riparian logging (average 10% removal) but the highest proportion of the catchment area that was clear cut (85%). 5.The post‐logging differences in invertebrate communities at this site were more related to catchment‐wide influences (e.g. weather patterns, water yield, possibly upland clearcutting) than to reach‐level disturbances from riparian logging. 6.The study indicates that partial‐harvest logging in riparian buffers at up to 50% removal should pose little risk of harm to leaf litter breakdown processes or aquatic invertebrate communities beyond any impacts that might arise from upland logging disturbance or catchment‐wide influences. However, the results should be viewed in the context of the natural disturbance (summer drought conditions) through the post‐logging assessment period of this study. Post‐logging summer drought conditions may have masked or confounded logging impacts on streams.  相似文献   

12.
Jon Molinero  Jesus Pozo 《Hydrobiologia》2004,528(1-3):143-165
Litterfall inputs, benthic storage and the transport of coarse particulate organic matter (CPOM) were studied in two headwater streams, one flowing through a mixed deciduous forest and one through a plantation of Eucalyptus globulus. Vertical and lateral traps, transported CPOM and benthic CPOM were sampled monthly to biweekly and sorted into four categories: leaves, twigs and bark, fruits and flowers and debris. The litterfall inputs were about 20% lower at the eucalyptus site but this reduction was unevenly distributed among the litter categories. The reduction of the nitrogen and phosphorus inputs was larger (50%) than that of CPOM because of the low nutrient concentration of the CPOM at the eucalyptus site. Transported CPOM was also lower at the eucalyptus site. Although total CPOM inputs to the stream were reduced in the eucalyptus plantation, benthic storage of CPOM was 50% higher due to (1) high inputs of CPOM and low discharge during summer, (2) more twig and bark inputs, (3) eucalyptus leaves being retained more efficiently in the stream than deciduous leaves (4) a lower discharge, which may in part be attributable to eucalyptus-induced changes in the hydrological cycle. Increased retention balanced lower nitrogen and phosphorus content of CPOM, so benthic storage of nitrogen and phosphorus was similar at both sites. This work demonstrates that the timing, quality and quantity of inputs and benthic storage of CPOM in streams changes substantially because of the substitution of natural deciduous forest with eucalyptus plantation. Maintenance of buffer strips of natural vegetation may be the best way to protect ecological functioning of small, forested streams.  相似文献   

13.
Abstract The grey mangrove tree, Avicennia marina, forms a hard substratum in an area otherwise dominated by soft-sediment. Various intertidal organisms attach to and move about on the trees. The abundant barnacles Elminius covenus, Hexaminius popeiana and Hexaminius foliorum live on a variety of substrata in mangrove forests. Their patterns of distribution and abundance were recorded and models proposed to explain these patterns. Densities of barnacles on bark, leaves and twigs of A. marina were estimated in a locality near Sydney. Elminius covenus were more abundant on bark than on leaves or twigs of A. marina. Hexaminius popeiana, although less abundant on bark than E. covenus, were not found on twigs or leaves. In contrast, H. foliorum were more abundant on twigs than leaves and were not found on the bark of A. marina. Densities of barnacles were greater in the seaward than in landward parts of the forest. Elminius covenus were the most abundant barnacles, H. foliorum were less abundant and H. popeiana were virtually absent in the landward zone. Barnacles in the seaward zone were most abundant at mid-tidal levels, less at high and low tidal levels of trunks and more abundant on lower than upper surfaces of trunks and leaves. The densities of barnacles differed according to the orientation of the bark or leaf. Models are proposed to explain the patterns of distribution and abundance of these barnacles. Each involves larval supply, settlement and post-settlement mortality. It is concluded that similar processes determining patterns of distribution and abundance for sessile organisms living on rock platforms may be applicable to sessile organisms living in the very different habitats of mangrove forests.  相似文献   

14.
Amazon and Cerrado‐forested streams show natural fluctuations in leaf litter quantity along the time and space, suggesting a change on litter quality input. These natural fluctuations of leaf litter have repercussion on the organic matter cycling and consequently effects on leaf decomposition in forested streams. The effects of the quantity of leaf litter with contrasting traits on consumption by larvae of shredder insects from biomes with different organic matter dynamics have still been an understudied question. The Trichoptera Phylloicus spp. is a typical shredder in tropical headwater streams and keep an important role in leaf litter decomposition. Here, we assessed the consumption by shredder Phylloicus spp., from Amazonia and Cerrado biomes, on higher (Maprounea guianensis) and lower quality leaves (Inga laurina) in different proportions and quantities. Experiments were performed concomitantly in microcosms approaches, simulating Cerrado and Amazonian streams. Higher leaf consumption occurred in Cerrado microcosms. Litter quantity influenced negatively leaf consumption by shredders in Cerrado, in opposition to Amazonia, where consumption was not affected by leaf quantity. In both sites, we observed higher consumption by shredders in treatment with only M. guianensis and no difference between other treatments with mixture of leaves. In treatment with litter of I. laurina, we noted the use of substrate for case building (due to the higher leaf toughness), affecting the fragmentation process. Therefore, our results indicate that leaf litter quality drives the preference of consumption by Phylloicus larvae in Cerrado and Amazonia streams.  相似文献   

15.
We studied the decomposition process and macroinvertebrate colonisation of leaf packs to determine to what extent leaf consumption and invertebrate abundance depend on the pollution level, season, leaf type and patch size. We exposed 400 leaf packs made of two leaf types, alder and chestnut, at two sites of the Erro River (NW Italy) with different environmental alteration levels. Leaf packs were set out as three patch sizes (alone, or in groups of 6 or 12). A first experiment was carried out in winter and a second in summer. Leaf packs were retrieved after 15, 30, 45 and 60 days of submersion to determine the leaf mass loss and to quantify the associated macroinvertebrates. Natural riverbed invertebrates were collected in the same areas. Patch size, season, leaf type and pollution level significantly affected mass loss. The breakdown process was faster for alder leaves, during summer, at the unpolluted site, and in smaller patches. Leaf type and patch size did not affect macroinvertebrate density and richness, but the highest taxon richness was found in winter and at the unpolluted site. There were more shredders and predators than in the natural riverbed. Our study supports two recent ideas regarding leaf processing in streams: that patch size influences the leaf breakdown rate and that the breakdown rate can be used to evaluate water quality and environmental health.  相似文献   

16.
  1. Temperate headwater streams traditionally have been considered heterotrophic and brown food web dominated with little primary production. Recent work, however, suggests algae on leaves in these streams may play a greater role than previously thought through interactions with microbial decomposers like fungi. Algae also may be important for macroinvertebrates colonizing leaves in streams. Algae are a more nutritious food resource for shredders than fungi and bacteria and provide a food resource for non-shredder macroinvertebrates.
  2. In a field experiment, we manipulated light in three low-nutrient and three high-nutrient streams using leaf bags filled with red maple leaves in winter and spring. After four weeks we measured algal and fungal biomass, leaf stoichiometry, and macroinvertebrate abundance and biomass associated with the leaf bags. We also identified the macroinvertebrate community and examined differences in functional feeding guilds and taxa under ambient- and shaded-light treatments and low- and high-nutrient concentrations in relation to measured leaf characteristics.
  3. Algal biomass on leaves was greatest in high-nutrient streams and ambient-light treatments in both seasons. Fungal biomass on leaves was greatest in high-nutrient streams and showed a moderate marginally significant positive correlation with algae during the winter. Leaf C:N was negatively correlated to algae in winter and fungi in both seasons, while leaf N:P and C:P were negatively correlated to fungi in winter and algae in spring. Interactions between fungi and algae on leaves and the nutritional importance of each for macroinvertebrates likely change across seasons, potentially impacting macroinvertebrate community composition.
  4. Macroinvertebrate diversity did not differ, but biomass was significantly greater in shaded-light treatments during spring. Abundance was highest in the high-nutrient ambient-light conditions in both seasons, corresponding to greatest algal biomass. Functional feeding guild biomass and abundance were related to different leaf characteristics by season and guild. Higher algal biomass was an important factor for colonization of certain macroinvertebrates (e.g., Ephemerella (Ephemeroptera: Ephemerellidae) and Stenonema (Ephemeroptera: Heptageniidae)), while others were more abundant under shaded treatments with lower algal biomass (e.g., Tipula (Diptera: Tipulidae)), indicating taxa-specific responses.
  5. Leaf-associated algae may be an important factor mediating macroinvertebrate communities associated with leaves in temperate headwater streams. Our results demonstrate that green and brown food webs intersect within leaf packs, and they cannot be easily disentangled. We therefore should consider both autochthonous and allochthonous resources within headwater streams when examining their communities or developing water management strategies.
  相似文献   

17.
1. The functioning of many aquatic ecosystems is controlled by surrounding terrestrial ecosystems. In a view of growing interest in linking biodiversity to ecosystem‐level processes, we examined whether and how leaf diversity influences litter decomposition and consumers in streams. 2. We tested experimentally the hypothesis that the effects of leaf diversity on decomposition are determined by the responses of leaf consumers to resource–habitat heterogeneity. Leaves from three common riparian trees, beech (Fagus sylvatica), hazel (Corylus avellana) and ash (Fraxinus excelsior), were exposed alone and in all possible mixtures of two and three species in a stream. We analysed individual leaf species for decomposition rate, microbial respiration and mycelial biomass, and we determined the species composition, abundance and biomass of shredders in leaf bags. 3. We found that the decomposition of the fastest decomposing leaves (hazel and ash) was substantially stimulated (up to twofold higher than single species leaf packs) in mixtures containing beech leaves, which are refractory. In contrast, the decomposition of beech leaves was not affected by leaf mixing. Such species‐specific behaviour of leaves in species mixtures has been overlooked in previous studies that examined the overall decomposition of litter mixtures. 4. The effects of leaf diversity on decomposition varied with the abundance and biomass of shredders but not with microbial parameters. Beech leaves alone were less attractive to shredders than leaf packs made of hazel, ash or any mixture of species. Moreover, the presence of beech leaves in mixtures led to higher shredder abundance and biomass than we had expected from data from single species exposed alone. Lastly, we found that early instars of the caddisfly Potamophylax (the dominant shredder in terms of biomass) almost exclusively used the toughest material (i.e. beech leaves) to construct their cases. 5. Leaf pack heterogeneity may have altered shredder‐mediated decomposition. Shredders colonising diverse leaf packs benefited from the stable substratum provided by beech leaves, whereas ash and hazel leaves were primarily used as food. Thus, our findings provide strong evidence for an intimate linkage between the diversity of riparian vegetation and aquatic communities.  相似文献   

18.
We examined microbial colonization, exoenzyme activity, and processing of leaves of yellow poplar (Liriodendron tulipifera), red maple (Acer rubrum), and white oak (Quercus alba) in three streams on the Allegheny Plateau of West Virginia, United States. Leaf packs were placed in streams that varied in their underlying bedrock geology, and therefore in their sensitivity to the high level of acidic precipitation that occurs in this region. The mean pH of the streams was 4.3 in the South Fork of Red Run (SFR), 6.2 in Wilson Hollow Run (WHR), and 7.7 in the North Fork of Hickman Slide Run (HSR). Through time, the patterns of microbial biomass and exoenzyme activity were generally similar among leaf species, but the magnitude of microbial biomass and exoenzyme activity differed among leaf species. Pectinase activity was greatest in HSR, the most alkaline stream, whereas the activity of exocellulase and xylanase was greatest in WHR and SFR, the intermediate and acidic streams. This variation in the activity of different exoenzymes was consistent with published pH optima for these exoenzymes. Variation in processing rates, both among leaf species and among streams, seems to be related to the level of microbial exoenzyme activity on the leaf detritus.  相似文献   

19.
20.
  1. Freshwater crabs are the largest macroconsumers in many neotropical headwater streams, but few studies have examined their roles in ecosystem processes such as leaf litter breakdown. As omnivorous macroconsumers, freshwater crabs affect multiple trophic levels. They may directly increase leaf breakdown through fragmentation and consumption or indirectly decrease breakdown by consuming other macroinvertebrates, including shredders and detritivores.
  2. In a headwater stream in Monteverde, Costa Rica, we conducted an in-stream experiment with 40 enclosures to quantify the effects of pseudothelphusid crabs on both leaf breakdown and macroinvertebrate colonisation of leaves. Half of the enclosures were randomly selected to contain two crabs (mean carapace width = 30 mm) and half were controls without crabs. We sampled mixed leaf packs from the enclosures on days 11, 19, 28, 34, and 42. We found the leaves of one species (Koanophyllon pittieri) almost completely decomposed by day 28 in both treatments (crab versus no crab). The other two leaf species (Meliosma idiopoda, Quercus brenesii) composed the remaining leaf mass at the end of the experiment.
  3. At 42 days, enclosures with crabs had faster rates of leaf breakdown than those without crabs (with crabs: k = −0.020; without crabs: k = −0.016; p = 0.034). This suggests that the magnitude of direct leaf breakdown by crabs, due to fragmentation, consumption, or manipulation of leaves, was greater than any indirect effects on leaf breakdown via crab consumption of other leaf-consuming species.
  4. Macroinvertebrate composition based on taxa abundances or biomasses did not significantly differ between treatments (ANOSIM; p = 0.73 and p = 0.65, respectively). Shredder and detritivore abundances and biomasses increased significantly through time (ANOVA; p ≤ 0.001), but there was no evidence of an effect of crab presence (p > 0.2), nor were there significant interactions between crab presence and time (p > 0.3).
  5. This is one of the first studies to quantify the effects of pseudothelphusid freshwater crabs on leaf breakdown rates. Our results suggest that these crabs can play a significant role in detrital processing in neotropical headwater streams. This study has also demonstrated that short-term enclosure experiments are useful in measuring in-stream effects of crab activity on leaf breakdown.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号