首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zvereva EL  Kozlov MV 《Oecologia》2012,169(2):441-452
Growing interest in belowground herbivory and the remarkable diversity of the accumulated information on this topic inspired us to quantitatively explore the variation in the outcomes of individual studies. We conducted a meta-analysis of 85 experimental studies reporting the effects of root-feeding insect herbivores (36 species) on plants (75 species). On average, belowground herbivory led to a 36.3% loss of root biomass, which was accompanied by a reduction in aboveground growth (-16.3%), photosynthesis (-11.7%) and reproduction (-15.5%). The effects of root herbivory on aboveground plant characteristics were significant in agricultural and biological control studies, but not in studies of natural systems. Experiments conducted in controlled environments yielded larger effects on plants than field experiments, and infestation experiments resulted in more severe effects than removal studies employing natural levels of herbivory. Simulated root herbivory led to greater aboveground growth reductions than similar root loss imposed by insect feeding. External root chewers caused stronger detrimental effects than sap feeders or root borers; specialist herbivores imposed milder adverse effects on plants than generalists. Woody plants suffered from root herbivory more than herbaceous plants, although root loss was similar in these two groups. Evergreen woody plants responded to root herbivory more strongly than deciduous woody plants, and grasses suffered from root herbivory more than herbs. Environmental factors such as drought, poor nutrient supply, among-plant competition, and aboveground herbivory increased the adverse effects of root damage on plants in an additive manner. In general, plant tolerance to root herbivores is lower than tolerance to defoliating aboveground herbivores.  相似文献   

2.
Modern concepts of plant tolerance to herbivory are primarily based on studies of short‐term severe damage, whereas the effects of minor chronic damage to long‐lived woody plants, corresponding to background herbivory (2–15% annual loss of foliar biomass in boreal and temperate forests), remain poorly understood. In our experiment, the annual removal of 2, 4, 8 and 16% of the leaf area from naturally growing mountain birch Betula pubescens subsp. czerepanovii saplings during a seven‐year period resulted in a pronounced reduction of plant vertical growth (–30, –34, –45 and –78%, respectively). Leaf size decreased first (already after one year of the 16% treatment), resulting in the reduction of the total leaf area. This effect was followed by a considerable decrease in the length of long shoots in all treatments. Leaf number on the plant was maintained for a longer time, being reduced by the end of the experiment in 16% treatment only; no changes in specific leaf area or chlorophyll fluorescence were observed in either of the treatments. This pattern may indicate that the plant reallocates resources from the growth of the woody parts to the maintenance of the photosynthetic area, and can be seen as a strategy of tolerance to minor herbivory, whereas compensatory responses typical of severe herbivory (increased photosynthesis rates and shoot regrowth) have not been detected. The predicted 2–5% increase in background herbivory due to climate warming can potentially produce previously unrecognised negative impacts on tree growth. We conclude that in the long term, background herbivory is likely to impose stronger effects on the growth of woody plants than short‐term devastating outbreaks of defoliators, thus contributing more to the development of plant evolutionary adaptations to herbivory than severe but episodic bouts of damage.  相似文献   

3.
We reviewed the evidence on the role of ants as plant biotic defenses, by conducting meta-analyses for the effects of experimental removal of ants on plant herbivory and fitness with data pooled from 81 studies. Effects reviewed were plant herbivory, herbivore abundance, hemipteran abundance, predator abundance, plant biomass and reproduction in studies where ants were experimentally removed (n = 273 independent comparisons). Ant removal exhibited strong effects on herbivory rates, as plants without ants suffered almost twice as much damage and exhibited 50% more herbivores than plants with ants. Ants also influenced several parameters of plant fitness, as plants without ants suffered a reduction in biomass (−23.7%), leaf production (−51.8%), and reproduction (−24.3%). Effects were much stronger in tropical regions compared to temperate ones. Tropical plants suffered almost threefold higher herbivore damage than plants from temperate regions and exhibited three times more herbivores. Ant removal in tropical plants resulted in a decrease in plant fitness of about 59%, whereas in temperate plants this reduction was not statistically significant. Ant removal effects were also more important in obligate ant–plants (=myrmecophytes) compared to plants exhibiting facultative relationships with hemiptera or those plants with extrafloral nectaries and food bodies. When only tropical plants were considered and the strength of the association between ants and plants taken into account, plants with obligate association with ants exhibited almost four times higher herbivory compared to plants with facultative associations with ants, but similar reductions in plant reproduction. The removal of a single ant species increased plant herbivory by almost three times compared to the removal of several ant species. Altogether, these results suggest that ants do act as plant biotic defenses, but the effects of their presence are more pronounced in tropical systems, especially in myrmecophytic plants. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. N. P. de U. Barbosa, L. Diniz, Y. Oki and F. Pezzini contributed equally to this work and are listed in alphabetical order.  相似文献   

4.
Surprisingly little research has been published on the responses to elevated [CO2] at the community level, where herbivores can select their preferred food. We investigated the combined effects of atmospheric [CO2] and herbivory on synthesised plant communities growing on soils of different fertility. Factorial combinations of two [CO2] (350 or 700 l l−1), two fertility (fertilised or non-fertilised), and two herbivory (herbivores present or absent) treatments were applied to a standard mixture of seven fast- and eight slow-growing plants in outdoor microcosms. The herbivores used were the grain aphid (Sitobion avenae) and the garden snail (Helix aspersa). We measured plant biomass, foliar nitrogen and soluble tannin concentration, aphid fecundity, and snail growth, fecundity, and feeding preferences over one growing season. Elevated [CO2] did not have a significant impact on (1) the combined biomass of fast-growing or slow-growing plants, (2) herbivore feeding preferences, or (3) herbivore fitness. There was, however, a significant biomass increase of Carex flacca (which represented in all cases less than 5% of total live biomass), and some chemical changes in unpalatable plants under elevated [CO2]. The herbivory treatment significantly increased the biomass of slow-growing plants over fast-growing plants, whereas fertilisation significantly increased the abundance of fast-growing plants over slow-growing plants. Predictions on the effects of elevated [CO2] based on published single-species experiments were not supported by the results of this microcosm study. Received: 30 November 1997 / Accepted: 24 July 1998  相似文献   

5.
Parker JD  Caudill CC  Hay ME 《Oecologia》2007,151(4):616-625
Herbivores have strong impacts on marine and terrestrial plant communities, but their impact is less well studied in benthic freshwater systems. For example, North American beavers (Castor canadensis) eat both woody and non-woody plants and focus almost exclusively on the latter in summer months, yet their impacts on non-woody plants are generally attributed to ecosystem engineering rather than herbivory. Here, we excluded beavers from areas of two beaver wetlands for over 2 years and demonstrated that beaver herbivory reduced aquatic plant biomass by 60%, plant litter by 75%, and dramatically shifted plant species composition. The perennial forb lizard’s tail (Saururus cernuus) comprised less than 5% of plant biomass in areas open to beaver grazing but greater than 50% of plant biomass in beaver exclusions. This shift was likely due to direct herbivory, as beavers preferentially consumed lizard’s tail over other plants in a field feeding assay. Beaver herbivory also reduced the abundance of the invasive aquatic plant Myriophyllum aquaticum by nearly 90%, consistent with recent evidence that native generalist herbivores provide biotic resistance against exotic plant invasions. Beaver herbivory also had indirect effects on plant interactions in this community. The palatable plant lizard’s tail was 3 times more frequent and 10 times more abundant inside woolgrass (Scirpus cyperinus) tussocks than in spatially paired locations lacking tussocks. When the protective foliage of the woolgrass was removed without exclusion cages, beavers consumed nearly half of the lizard’s tail leaves within 2 weeks. In contrast, leaf abundance increased by 73–93% in the treatments retaining woolgrass or protected by a cage. Thus, woolgrass tussocks were as effective as cages at excluding beaver foraging and provided lizard’s tail plants an associational refuge from beaver herbivory. These results suggest that beaver herbivory has strong direct and indirect impacts on populations and communities of herbaceous aquatic plants and extends the consequences of beaver activities beyond ecosystem engineering.  相似文献   

6.
Plants experience unique challenges due to simultaneous life in two spheres, above- and belowground. Interactions with other organisms on one side of the soil surface may have impacts that extend across this boundary. Although our understanding of plant–herbivore interactions is derived largely from studies of leaf herbivory, belowground root herbivores may affect plant fitness directly or by altering interactions with other organisms, such as pollinators. In this study, we investigated the effects of leaf herbivory, root herbivory, and pollination on plant growth, subsequent leaf herbivory, flower production, pollinator attraction, and reproduction in cucumber (Cucumis sativus). We manipulated leaf and root herbivory with striped cucumber beetle (Acalymma vittatum) adults and larvae, respectively, and manipulated pollination with supplemental pollen. Both enhanced leaf and root herbivory reduced plant growth, and leaf herbivory reduced subsequent leaf damage. Plants with enhanced root herbivory produced 35% fewer female flowers, while leaf herbivory had no effect on flower production. While leaf herbivory reduced the time that honey bees spent probing flowers by 29%, probing times on root-damaged plants were over twice as long as those on control plants. Root herbivory increased pollen limitation for seed production in spite of increased honey bee preference for plants with root damage. Leaf damage and hand-pollination treatments had no effect on fruit production, but plants with enhanced root damage produced 38% fewer fruits that were 25% lighter than those on control plants. Despite the positive effect of belowground damage on honey bee visitation, root herbivory had a stronger negative effect on plant reproduction than leaf herbivory. These results demonstrate that the often-overlooked effects of belowground herbivores may have profound effects on plant performance.  相似文献   

7.
Although insect herbivory can modify subsequent quantity and quality of their host plants, change in plant quantity following herbivory has received less attention than plant quality. In particular, little is known about how previous herbivore damage determines plant growth and biomass in an insect species-specific manner. We explored whether herbivore species-specific food demand influences plant growth and biomass. To do this, we conducted a series of experiments and field survey using two specialist butterflies, Sericinus montela and Atrophaneura alcinous, and their host plant, Aristolochia debilis. It is known that A. alcinous larva requires four times more food resources to fulfill its development than S. montela larva. Despite that A. alcinous larvae imposed greater damage on plants than S. montela larvae, plant growth did not differ due to herbivory by these species both in single and multiple herbivory events. On the other hand, total aboveground biomass of the plants was reduced more by A. alcinous than S. montela feeding regardless of the number of herbivory events. Feeding on plants with a history of previous herbivory neither decreased nor increased larval growth. Our results suggest that food demand of the two butterfly species determined subsequent plant biomass, although the plant response may depend on tolerance of the host plant (i.e., ability to compensate for herbivore damage). Such difference in the effects of different herbivore species on host plant biomass is more likely to occur than previously thought, because food demand differs in most herbivore species sharing a host plant.  相似文献   

8.
Plant diversity can influence predators and omnivores and such effects may in turn influence herbivores and plants. However, evidence for these ecological feedbacks is rare. We evaluated if the effects of tree species (SD) and genotypic diversity (GD) on the abundance of different guilds of insect herbivores associated with big-leaf mahogany (Swietenia macrophylla) were contingent upon the protective effects of ants tending extra-floral nectaries of this species. This study was conducted within a larger experiment consisting of mahogany monocultures and species polycultures of four species and –within each of these two plot types– mahogany was represented by either one or four maternal families. We selected 24 plots spanning these treatment combinations, 10 mahogany plants/plot, and within each plot experimentally reduced ant abundance on half of the selected plants, and surveyed ant and herbivore abundance. There were positive effects of SD on generalist leaf-chewers and sap-feeders, but for the latter group this effect depended on the ant reduction treatment: SD positively influenced sap-feeders under ambient ant abundance but had no effect when ant abundance was reduced; at the same time, ants had negative effects on sap feeders in monoculture but no effect in polyculture. In contrast, SD did not influence specialist stem-borers or leaf-miners and this effect was not contingent upon ant reduction. Finally, GD did not influence any of the herbivore guilds studied, and such effects did not depend on the ant treatment. Overall, we show that tree species diversity influenced interactions between a focal plant species (mahogany) and ants, and that such effects in turn mediated plant diversity effects on some (sap-feeders) but not all the herbivores guilds studied. Our results suggest that the observed patterns are dependent on the combined effects of herbivore identity, diet breadth, and the source of plant diversity.  相似文献   

9.
Knowledge of the latitudinal patterns in biotic interactions, and especially in herbivory, is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. We used sap‐feeding insects as a model group to test the hypotheses that the strength of plant–herbivore interactions in boreal forests decreases with latitude and that this latitudinal pattern is driven primarily by midsummer temperatures. We used a replicated sampling design and quantitatively collected and identified all sap‐feeding insects from four species of forest trees along five latitudinal gradients (750–1300 km in length, ten sites in each gradient) in northern Europe (59 to 70°N and 10 to 60°E) during 2008–2011. Similar decreases in diversity of sap‐feeding insects with latitude were observed in all gradients during all study years. The sap‐feeder load (i.e. insect biomass per unit of foliar biomass) decreased with latitude in typical summers, but increased in an exceptionally hot summer and was independent of latitude during a warm summer. Analysis of combined data from all sites and years revealed dome‐shaped relationships between the loads of sap‐feeders and midsummer temperatures, peaking at 17 °C in Picea abies, at 19.5 °C in Pinus sylvestris and Betula pubescens and at 22 °C in B. pendula. From these relationships, we predict that the losses of forest trees to sap‐feeders will increase by 0–45% of the current level in southern boreal forests and by 65–210% in subarctic forests with a 1 °C increase in summer temperatures. The observed relationships between temperatures and the loads of sap‐feeders differ between the coniferous and deciduous tree species. We conclude that climate warming will not only increase plant losses to sap‐feeding insects, especially in subarctic forests, but can also alter plant‐plant interactions, thereby affecting both the productivity and the structure of future forest ecosystems.  相似文献   

10.
Neotyphodium endophytes are asexual, seed-borne fungal symbionts that are thought to interact mutualistically with their grass hosts. Benefits include increased growth, reproduction, and resistance to herbivores via endophytic alkaloids. Although these benefits are well established in infected introduced, agronomic grasses, little is known about the cost and benefits of endophyte infection in native grass populations. These populations exist as mosaics of uninfected and infected plants, with the latter often comprised of plants that vary widely in alkaloid content. We tested the costs and benefits of endophyte infections with varying alkaloids in the native grass Achnatherum robustum (sleepygrass). We conducted a 4-year field experiment, where herbivory and water availability were controlled and survival, growth, and reproduction of three maternal plant genotypes [uninfected plants (E−), infected plants with high levels of ergot alkaloids (E+A+), and infected plants with no alkaloids (E+A−)] were monitored over three growing seasons. Generally, E+A+ plants had reduced growth over the three growing seasons and lower seed production than E− or E+A− plants, suggesting a cost of alkaloid production. The reduction in vegetative biomass in E+A+ plants was most pronounced under supplemented water, contrary to the prediction that additional resources would offset the cost of alkaloid production. Also, E+A+ plants showed no advantage in growth, seed production, or reproductive effort under full herbivory relative to E− or E+A− grasses, contrary to the predictions of the defensive mutualism hypothesis. However, E+A+ plants had higher overwintering survival than E+A− plants in early plant ontogeny, suggesting that alkaloids associated with infection may protect against below ground herbivory or harsh winter conditions. Our results suggest that the mosaic of E−, E+A+, and E+A− plants observed in nature may result from varying biotic and abiotic selective factors that maintain the presence of uninfected plants and infected plants that vary in alkaloid production.  相似文献   

11.
Aphid herbivory decreases primary production in natural ecosystems and reduces crop yields. The mechanism for how aphids reduce yield is poorly understood as some studies suggest aphid feeding directly impedes photosynthesis, whereas other studies suggest a change in allocation of resources from growth to defense compounds reduces yield. To determine the mechanisms underlying reduced plant growth by aphids, Nicotiana attenuata plants, native tobacco, were infested with Myzus persicae ssp. nicotianae, tobacco-adapted green peach aphids, at low and high densities, and plant performance including fitness was assessed. To test the direct defense capacity of salicylic acid (SA) on aphid performance, we fed aphids an artificial diet with varying levels of SA and measured their survivorship and fecundity. There was no detectable effect of aphid herbivory on net photosynthesis, yet herbivory reduced plant growth, final biomass (43 % at high aphid density), and seed set (18 % at high aphid density) at both low and high aphid infestation levels. High-density aphid attack during the rosette and flowering stage caused an increase in SA levels, but caused only a transient decrease in jasmonic acid concentration at low aphid density. SA concentrations similar to those found in infested flowering plants decreased aphid fecundity, suggesting that SA was an effective chemical defense response against aphids. These results suggest that as aphid densities increased the proximal cause of reduced growth and yield was not reduced photosynthesis, but instead resources may have been mobilized for defense via the SA pathway, decreasing the availability of resources for building plant biomass.  相似文献   

12.
Direct plant uptake of metals bound to chelating agents has important implications for metal uptake and the free-ion activity model. Uptake of hydrophilic solutes such as metal–EDTA complexes is believed to occur via bypass apoplastic flow, but many questions remain about the relative importance and selectivity of this pathway. In this study, Brassica juncea (Indian mustard) plants grown in solution- and sand-culture conditions were exposed to metal–EDTA complexes and to PTS, a hydrophilic fluorescent dye previously used as a tracer of apoplastic flow. The results suggest that there are two general phases of solute uptake. Under normal conditions, xylem sap solute concentrations are relatively low (i.e., <0.5% of concentration in solution) and there is a high degree of selectivity among different solutes, while under conditions of stress, xylem sap concentrations are significantly higher (i.e., >3% of concentration in solution) and the selectivity among solutes is less. In healthy plants, xylem sap metal–EDTA concentrations were generally an order of magnitude higher than those of PTS and differences among complexes were observed, with CdEDTA2− exhibiting slightly higher xylem sap concentrations than PbEDTA2− or FeEDTA. Metal–EDTA complexes were found to dominate xylem sap metal speciation and the fraction of metal in xylem sap present as metal–EDTA was greater for non-nutrient metals (Pb, Cd) than for the nutrient metal Fe. Despite differences in root morphology between plants grown under solution- and sand-culture conditions, uptake of solutes was similar under both sets of growth conditions.  相似文献   

13.
寄主氮源胁迫下刺吸式昆虫的表现及其适应性对策   总被引:2,自引:1,他引:1  
寄主氮源胁迫下刺吸式昆虫的表现及其适应性对策马巨法胡国文程家安(中国水稻研究所,杭州310006)(浙江农业大学,杭州310029)PopulationPerformancesoftheSapFeedersunderLowNitrogenStres...  相似文献   

14.
Predators can decrease herbivore damage to plants, and this is often assumed to be beneficial to plant growth/reproduction without actual quantification. Moreover, previous studies have been biased towards strict carnivores and neglected the role of omnivorous predators in prey-suppression. Here, we examined the costs (reduction in growth) and benefits (increase in growth) of enemy-mediated plant protection via the omnivorous (prey and plant-feeding) Orthotylus marginalis, relative to herbivory by a detrimental insect pest of Salix spp. plantations, the beetle Phratora vulgatissima. In a first experiment, we compared the cost of adult beetle versus omnivore nymph plant-feeding, and assessed the (non-) additive effects of the two types of damage. In a second experiment, we quantified the reduction in plant damage resulting from beetle-egg feeding by omnivorous nymphs and subsequent benefits to plants. We found that plant-feeding by omnivores negatively affected plant growth and this effect was similar to the cost imposed by beetle herbivory. Furthermore, simultaneous damage effects were additive and more detrimental than individual effects. While egg-predation by omnivore nymphs completely prevented beetle damage to plants, there was no difference in plant growth relative to only herbivore-damaged plants and growth was still reduced compared to control plants. Thus, despite herbivore suppression, there was no benefit to plant growth of omnivore-mediated plant protection and the negative effects of omnivore plant-feeding remained. These results are a first for an omnivorous enemy, and provide novel and timely insights on the underlying assumptions of tri-trophic associations and their use for biocontrol of insect pests.  相似文献   

15.
Some exotic plants are able to invade habitats and attain higher fitness than native species, even when the native species are closely related. One explanation for successful plant invasion is that exotic invasive plant species receive less herbivory or other enemy damage than native species, and this allows them to achieve rapid population growth. Despite many studies comparing herbivory and fitness of native and invasive congeners, none have quantified population growth rates. Here, we examined the contribution of herbivory to the population dynamics of the invasive species, Lespedeza cuneata, and its native congener, L. virginica, using an herbivory reduction experiment. We found that invasive L. cuneata experienced less herbivory than L. virginica. Further, in ambient conditions, the population growth rate of L. cuneata (λ = 20.4) was dramatically larger than L. virginica (λ = 1.7). Reducing herbivory significantly increased fitness of only the largest L. virginica plants, and this resulted in a small but significant increase in its population growth rate. Elasticity analysis showed that the growth rate of these species is most sensitive to changes in the seed production of small plants, a vital rate that is relatively unaffected by herbivory. In all, these species show dramatic differences in their population growth rates, and only 2% of that difference can be explained by their differences in herbivory incidence. Our results demonstrate that to understand the importance of consumers in explaining the relative success of invasive and native species, studies must determine how consumer effects on fitness components translate into population-level consequences. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Two leaf-feeding caterpillars, western tussock moth (Orgyia vetusta) and ranchman's tiger moth (Platyprepia virginalis) are abundant on Lupinus arboreus along the California coast. Previous experiments and observations suggested that feeding caused by either of these two folivores could reduce the performance and possibly the abundance and distribution of the other species. Previous common garden experiments also indicated that genetically determined characteristics of the host plants were important for O. vetusta. Here we examined the effects of familial origin of the host plant, and previous damage caused by O. vetusta on the abundance of P. virginalis. Plants with parents from one of three locations had higher numbers of P. virginalis than plants with parents from the other two locations. However, this effect of plant origin depended on the statistical analysis and was not as strong as the effect of prior damage by O. vetusta on numbers of P. virginalis. Counter to our expectation, bushes that supported higher levels of damage by O. vetusta in the previous summer had more P. virginalis caterpillars. This strong effect could result by both moth species selecting bushes with the same traits or as the result of herbivory by O. vetusta enhancing the susceptibility of bushes for P. virginalis. Received: 28 October 1998 / Accepted: 14 March 1999  相似文献   

17.
Photosynthetic properties of carnivorous plants have not been well characterized and the extent to which photosynthesis contributes to carbon gain in most carnivorous plants is also largely unknown. We investigated the photosynthetic light response in three carnivorous plant species, Drosera rotundifolia L. (sundew; circumpolar and native to northern British Columbia, Canada), Sarracenia leucophylla Rafin. (‘pitcher-plant’; S.E. United States), and D. capensis L. (sundew; Cape Peninsula, South Africa), using portable gas-exchange systems to explore the capacity for photosynthetic carbon gain in carnivorous plant species. Maximal photosynthetic rates (1.32–2.22 μmol m−2 s−1 on a leaf area basis) and saturating light intensities (100 to 200 μmol PAR m−2 s−1) were both low in all species and comparable to shade plants. Field or greenhouse-grown D. rotundifolia had the highest rates of photosynthesis among the three species examined. Dark respiration, ranging from −1.44 (S. leucophylla) to −3.32 (D. rotundifolia) μmol m−2 s−1 was high in comparison to photosynthesis in the species examined. Across greenhouse-grown plants, photosynthetic light compensation points scaled with light-saturated photosynthetic rates. An analysis of gas-exchange and growth data for greenhouse-grown D. capensis plants suggests that photosynthesis can account for all plant carbon gain in this species.  相似文献   

18.
Induced plant responses to herbivory appear to be universal, yet the degree to which they are specific to sets of herbivores is poorly understood. The generalist/specialist hypothesis predicts that generalist herbivores are more often negatively affected by host plant defenses, wheras specialists may be either unaffected by or attracted to these same "plant defenses". Therefore, specialists should be less predictable than generalists in their responses to induced plant resistance traits. To better understand the variation in plant responses to herbivore attack, and the impacts these responses have on specialist herbivores, we conducted a series of experiments examining pairwise interactinos between two specialaist herbivores of the common milkweed ( Asclepias syriaca ). We damaged plants mechnically, with swamp milkweed beetles ( Labidomera clivicollis ), or with monarchs ( Danaus plexippus ), and then asessed specificity of elicitation, both by measuring a putative defensive trait (latex volume) and by challenging plants with insects of both species in bioasays. Latex production increased by 34% and 13% following beetle and monarch herbivory, respectively, but only beetles significantly elevated latex production compared to undamaged controls. While beetle growth was negatively affected by latex across all experiments, beetles were not affected by previous damage caused by conspecifies or by monarchs. In contrast, monarchs feeding on previously damaged plants were 20% smaller, and their response was the same on plants damaged mechnically or by either herbivore. Therefore, these specialist herbivores exhibit both specificity of elicitation in plant responses and specificity of effects in response to prior damage.  相似文献   

19.
Potassium deficient (−K) and potassium sufficient (+K) plants were exposed to four days of water stress. Well watered −K and +K plants had comparable rates of transpiration. But +K plants had a larger leaf area and depleted the soil moisture to a greater extent on day 1 of stress. For days 2 and 3 their transpiration rate, leaf water potential and relative water content fell below those of −K plants. Well watered −K plants had a significantly lower rate of photosynthesis than +K plants. Photosynthesis of −K plants was more sensitive to reduction in plant water potential than that of +K plants. Reduction of photosythesis in −K leaves was due to impairment of photosynthetic capacity and not to stomatal closure. Growth was significantly reduced in −K plants.  相似文献   

20.
Herbivory has many effects on plants, ranging from shifts in primary processes such as photosynthesis, growth, and phenology to effects on defense against subsequent herbivores and other species interactions. In this study, I investigated the effects of herbivory on seed and seedling characteristics of several families of wild radish (Raphanus raphanistrum) to test the hypothesis that herbivory may affect the quality of offspring and the resistance of offspring to plant parasites. Transgenerational effects of herbivory may represent adaptive maternal effects or factors that constrain or amplify natural selection on progeny. Caterpillar (Pieris rapae) herbivory to greenhouse-grown plants caused plants in some families to produce smaller seeds and those in other families to produce larger seeds compared with undamaged controls. Seed mass was positively associated with probability of emergence in the field. The number of setose trichomes, a putative plant defense, was higher in the progeny of damaged plants in some families and lower in the progeny of damaged plants in other families. In a field experiment, plant families varied in their resistance to several herbivores and pathogens as well as in growth rate and time to flowering. Seeds from damaged parent plants were more likely to become infested with a plant virus. Although herbivory on maternal plants did not directly affect interactions of offspring with other plant parasites, seed mass influenced plant resistance to several attackers. Thus, herbivory affected seed characters, which mediated interactions between plants and their parasites. Finally, irrespective of seed mass, herbivory on maternal plants influenced components of progeny fitness, which was dependent on plant family. Natural selection may act on plant responses to herbivory that affect seedling-parasite interactions and, ultimately, fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号