首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
The vascular system controls the delivery of nutrients and hormones to muscle, and a number of hormones may act to regulate muscle metabolism and contractile performance by modulating blood flow to and within muscle. This review examines evidence that insulin has major hemodynamic effects to influence muscle metabolism. Whole body, isolated hindlimb perfusion studies and experiments with cell cultures suggest that the hemodynamic effects of insulin emanate from the vasculature itself and involve nitric oxide-dependent vasodilation at large and small vessels with the purpose of increasing access for insulin and nutrients to the interstitium and muscle cells. Recently developed techniques for detecting changes in microvascular flow, specifically capillary recruitment in muscle, indicate this to be a key site for early insulin action at physiological levels in rats and humans. In the absence of increases in bulk flow to muscle, insulin may act to switch flow from nonnutritive to the nutritive route. In addition, there is accumulating evidence to suggest that insulin resistance of muscle in vivo in terms of impaired glucose uptake could be partly due to impaired insulin-mediated capillary recruitment. Exercise training improves insulin-mediated capillary recruitment and glucose uptake by muscle.  相似文献   

3.
4.
5.
Mice adapted to a high-fat diet are reported to be leptin resistant; however, we previously reported that mice fed a high-fat (HF) diet and housed at 23 degrees C remained sensitive to peripheral leptin and specifically lost body fat. This study tested whether leptin action was impaired by a combination of elevated environmental temperature and a HF diet. Male C57BL/6 mice were adapted to low-fat (LF) or HF diet from 10 days of age and were housed at 27 degrees C from 28 days of age. From 35 days of age, baseline food intake and body weight were recorded for 1 wk and then mice on each diet were infused with 10 microg leptin/day or PBS from an intraperitoneal miniosmotic pump for 13 days. HF-fed mice had a higher energy intake than LF-fed mice and were heavier but not fatter. Serum leptin was lower in PBS-infused HF- than LF-fed mice. Leptin significantly inhibited energy intake of both LF-fed and HF-fed mice, and this was associated with a significant increase in hypothalamic long-form leptin receptors with no change in short-form leptin receptor or brown fat uncoupling protein-1 mRNA expression. Leptin significantly inhibited weight gain in both LF- and HF-fed mice but reduced the percentage of body fat mass only in LF-fed mice. The percentage of lean and fat tissue in HF-fed mice did not change, implying that overall growth had been inhibited. These results suggest that dietary fat modifies the mechanisms responsible for leptin-induced changes in body fat content and that those in HF-fed mice are sensitive to environmental temperature.  相似文献   

6.
Ligand-induced activation of the glucocorticoid receptor (GR) is not well understood. The GR ligand-binding domain was modeled, based on homology with the progesterone receptor. Tyrosine 735 interacts with the D ring of dexamethasone, and substitution of D ring functional groups results in partial agonist steroids with reduced ability to direct transactivation. Loss of the Tyr735 hydroxyl group by substitution to phenylalanine (Tyr735Phe) did not reduce ligand binding affinity [dissociation constant (Kd) 4.3 nM compared with Kd 4.6 nM for wild-type] and did not alter transrepression of an nuclear factor-kappaB (NF-kappaB reporter. But, there was a significant 30% reduction in maximal transactivation of a mouse mammary tumor virus (MMTV) reporter, although with an unchanged EC50 (8.6 nM compared with 6 nM). Substitution to a nonaromatic hydrophobic amino acid, valine (Tyr735Val), retained high-affinity ligand binding for dexamethasone (Kd 6 nM compared with 4.6 nM) and did not alter transrepression of NF-kappaB. However, there was a 36% reduction in MMTV activity with a right shift in EC50 (14.8 nM). The change to serine, a small polar amino acid (Tyr735Ser), caused significantly lower affinity for dexamethasone (10.4 nM). Maximal transrepression of NF-kappaB was unaltered, but the IC50 for this effect was increased. Tyr735Ser had a major shift in EC50 (118 nM) for transactivation of an MMTV reporter. Maximal transactivation of MMTV induced by the natural ligand cortisol was reduced to 60% by Tyr735Phe and Tyr735Val and was completely absent by Tyr735Ser. These data suggest that tyrosine 735 is important for ligand interpretation and transactivation.  相似文献   

7.
Binding of highly purified glucocorticoid receptor complexes to nuclear matrix was evaluated. Extraction of purified nuclei with 2M potassium chloride and brief deoxyribonuclease digestion leaves a matrix structure containing 1% of nuclear DNA and 6-12% of nuclear proteins. The nuclear matrix retained two binding sites for receptor complexes, a high affinity, low capacity site and a low affinity, high capacity site. These sites have affinities and capacities consistent with those reported for binding of these complexes to intact nuclei. More extensive deoxyribonuclease treatment of the matrix resulted in a marked reduction of high affinity complex binding. Furthermore, the DNA binding form of the receptor complex but not the unactivated receptor complex bound to DNA fibers anchored to nuclear matrix as visualized by 18 nm gold particle receptor complexes. The data suggest that the nuclear matrix is the major site for coordinating glucocorticoid hormone action in the nucleus.  相似文献   

8.

Introduction

Inflammatory arthritis is associated with increased bone resorption and suppressed bone formation. The Wnt antagonist dickkopf-1 (DKK1) is secreted by synovial fibroblasts in response to inflammation and this protein has been proposed to be a master regulator of bone remodelling in inflammatory arthritis. Local glucocorticoid production is also significantly increased during joint inflammation. Therefore, we investigated how locally derived glucocorticoids and inflammatory cytokines regulate DKK1 synthesis in synovial fibroblasts during inflammatory arthritis.

Methods

We examined expression and regulation of DKK1 in primary cultures of human synovial fibroblasts isolated from patients with inflammatory arthritis. The effect of TNFα, IL-1β and glucocorticoids on DKK1 mRNA and protein expression was examined by real-time PCR and ELISA. The ability of inflammatory cytokine-induced expression of the glucocorticoid-activating enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to sensitise fibroblasts to endogenous glucocorticoids was explored. Global expression of Wnt signalling and target genes in response to TNFα and glucocorticoids was assessed using a custom array.

Results

DKK1 expression in human synovial fibroblasts was directly regulated by glucocorticoids but not proinflammatory cytokines. Glucocorticoids, but not TNFα, regulated expression of multiple Wnt agonists and antagonists in favour of inhibition of Wnt signalling. However, TNFα and IL-1β indirectly stimulated DKK1 production through increased expression of 11β-HSD1.

Conclusions

These results demonstrate that in rheumatoid arthritis synovial fibroblasts, DKK1 expression is directly regulated by glucocorticoids rather than TNFα. Consequently, the links between synovial inflammation, altered Wnt signalling and bone remodelling are not direct but are dependent on local activation of endogenous glucocorticoids.  相似文献   

9.
Exploring action dynamics as an index of paired-associate learning   总被引:1,自引:0,他引:1  
Dale R  Roche J  Snyder K  McCall R 《PloS one》2008,3(3):e1728
Much evidence exists supporting a richer interaction between cognition and action than commonly assumed. Such findings demonstrate that short-timescale processes, such as motor execution, may relate in systematic ways to longer-timescale cognitive processes, such as learning. We further substantiate one direction of this interaction: the flow of cognition into action systems. Two experiments explored match-to-sample paired-associate learning, in which participants learned randomized pairs of unfamiliar symbols. During the experiments, their hand movements were continuously tracked using the Nintendo Wiimote. Across learning, participant arm movements are initiated and completed more quickly, exhibit lower fluctuation, and exert more perturbation on the Wiimote during the button press. A second experiment demonstrated that action dynamics index novel learning scenarios, and not simply acclimatization to the Wiimote interface. Results support a graded and systematic covariation between cognition and action, and recommend ways in which this theoretical perspective may contribute to applied learning contexts.  相似文献   

10.
Tyrosine hydroxylase (TH) is the first and rate-limiting enzyme in dopamine synthesis. Dopamine regulates TH as an end-product inhibitor through its binding to a high and low affinity site, the former being abolished by Ser40 phosphorylation only, and the latter able to bind and dissociate according to intracellular dopamine levels. Here, we have investigated TH inhibition by a dopamine metabolite found in dopaminergic brain regions, salsolinol (SAL). SAL is known to decrease dopamine in the nigrostriatal pathway and mediobasal hypothalamus, and to also decrease plasma catecholamines in rat stress models, however a target and mechanism for the effects of SAL have not been found. We found that SAL inhibits TH activity in the nanomolar range in vitro, by binding to both the high and low affinity dopamine binding sites. SAL produces the same level of inhibition as dopamine when TH is non-phosphorylated. However, it produces 3.7-fold greater inhibition of Ser40-phosphorylated TH compared to dopamine by competing more strongly with tetrahydrobiopterin, the cofactor of this enzymatic reaction. SAL’s potent inhibition of phosphorylated TH would prevent TH from being fully activated to synthesise dopamine.  相似文献   

11.
12.
13.
Glucocorticoids play an important role in the normal regulation of bore remodeling; however continued exposure of bone to glucocorticoid excess results in osteoporosis. In vivo, glucocorticoids stimulate bone resorption and decreasae bone formation, and in vitro studies have shown that while glucocorticoids stimulateosteoblastic differentiation, they have important inhibitory actions on bone formation. Glucocorticoids have manyeffects on osteoblast gene expression, including down-regulation of type 1 collagen and osteocalcin, and up-regulation of interstitial collagenase. The synthesis and activity of osteoblast growth factors can be modulated by glucocorticoids as well. For example, insulin-like growth factor 1 (IGF-1) is an important stimulator of osteoblast function, and expression of IGF-1 is decreased by glucocorticoids. The activity of IGF 1 can be modified by IGF binding proteins (IGFBPs), and theirsynthesis is also regulated by glucocorticoids. Thus, glucocorticoid action on osteoblasts can be direct, by activating or repressing osteoblast gene expression, or indirect by altering the expression or activity of osteoblast growth factors. Further investigation of the mechanisms by which glucocorticoids mnodulate gene expression in bore cells will contribute to our understanding or steroid hormone biology and will provide a basis for the design of effective treatments for glucocorticoid-induced osteoporosis.  相似文献   

14.
15.
16.
17.
18.
19.
20.
T Mine  I Kojima    E Ogata 《The Biochemical journal》1989,258(3):889-894
The synthetic 1-34 fragment of human parathyroid hormone (1-34hPTH) stimulated glucose production in isolated rat hepatocytes. The effect of 1-34hPTH was dose-dependent and 10(10) M-1-34 hPTH elicited the maximum glucose output, which was approx. 80% of that by glucagon. Although 1-34hPTH induced a small increase in cyclic AMP production at concentrations higher than 10(-9) M, 10(-10) M-1-34hPTH induced the maximum glucose output without significant elevation of cyclic AMP. This is in contrast to the action of forskolin, which increased glucose output to the same extent as 10(-10) M-1-34hPTH by causing a 2-fold elevation of cyclic AMP. In addition to increasing cyclic AMP, 1-34hPTH caused an increase in cytoplasmic free calcium concentration ([Ca2+]c). When the effect of 1-34hPTH on [Ca2+]c was studied in aequorin-loaded cells, low concentrations of 1-34hPTH increased [Ca2+]c: the 1-34hPTH effect on [Ca2+]c was detected at as low as 10(-12) M and increased in a dose-dependent manner. 1-34hPTH increased [Ca2+]c even in the presence of 1 microM extracellular calcium, suggesting that PTH mobilizes calcium from an intracellular pool. In line with these observations, 1-34hPTH increased the production of inositol trisphosphate. These results suggest that: (1) PTH activates both cyclic AMP and calcium messenger systems and (2) PTH stimulates glycogenolysis mainly via the calcium messenger system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号