首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.

Background  

There are considerable differences between bacterial and mammalian glycans. In contrast to most eukaryotic carbohydrates, bacterial glycans are often composed of repeating units with diverse functions ranging from structural reinforcement to adhesion, colonization and camouflage. Since bacterial glycans are typically displayed at the cell surface, they can interact with the environment and, therefore, have significant biomedical importance.  相似文献   

2.

Background  

Carbohydrates play a critical role in human diseases and their potential utility as biomarkers for pathological conditions is a major driver for characterization of the glycome. However, the additional complexity of glycans compared to proteins and nucleic acids has slowed the advancement of glycomics in comparison to genomics and proteomics. The branched nature of carbohydrates, the great diversity of their constituents and the numerous alternative symbolic notations, make the input and display of glycans not as straightforward as for example the amino-acid sequence of a protein. Every glycoinformatic tool providing a user interface would benefit from a fast, intuitive, appealing mechanism for input and output of glycan structures in a computer readable format.  相似文献   

3.
4.

Background  

Novel molecular and statistical methods are in rising demand for disease diagnosis and prognosis with the help of recent advanced biotechnology. High-resolution mass spectrometry (MS) is one of those biotechnologies that are highly promising to improve health outcome. Previous literatures have identified some proteomics biomarkers that can distinguish healthy patients from cancer patients using MS data. In this paper, an MS study is demonstrated which uses glycomics to identify ovarian cancer. Glycomics is the study of glycans and glycoproteins. The glycans on the proteins may deviate between a cancer cell and a normal cell and may be visible in the blood. High-resolution MS has been applied to measure relative abundances of potential glycan biomarkers in human serum. Multiple potential glycan biomarkers are measured in MS spectra. With the objection of maximizing the empirical area under the ROC curve (AUC), an analysis method was considered which combines potential glycan biomarkers for the diagnosis of cancer.  相似文献   

5.

Background

The aims of this study were to determine the change of whole-serum N-glycan profile in ulcerative colitis (UC) patients and to investigate its clinical utility.

Methods

We collected serum from 75 UC patients at the time of admission and the same number of age/sex-matched healthy volunteers. Serum glycan profile was measured by comprehensive quantitative high-throughput glycome analysis and was compared with disease activity and prognosis.

Results

Out of 61 glycans detected, 24 were differentially expressed in UC patients. Pathway analysis demonstrated that highly sialylated multi-branched glycans and agalactosyl bi-antennary glycans were elevated in UC patients; in addition, the glycan ratio m/z 2378/1914, which also increased in UC, showed the highest Area under Receiver Operating Characteristic curve (0.923) for the diagnosis of UC. Highly sialylated multi-branched glycans and the glycan ratio m/z 2378/1914 were higher in the patients with total colitis, Clinical Activity Index >10, Mayo endoscopic score 3, or a steroid-refractory status. In particular, the glycan ratio m/z 2378/1914 (above median) was an independent prognostic factor for the need for an operation (hazard ratio, 2.67; 95% confidence interval, 1.04–7.84).

Conclusions

Whole-serum glycan profiles revealed that the glycan ratio m/z 2378/1914 and highly sialylated multi-branched glycans increase in UC patients, and are correlated with disease activity. The glycan ratio m/z 2378/1914 was an independent predictive factor of the prognosis of UC.  相似文献   

6.

Background  

Glycans are involved in a wide range of biological process, and they play an essential role in functions such as cell differentiation, cell adhesion, pathogen-host recognition, toxin-receptor interactions, signal transduction, cancer metastasis, and immune responses. Elucidating pathways related to post-translational modifications (PTMs) such as glycosylation are of growing importance in post-genome science and technology. Graphical networks describing the relationships among glycan-related molecules, including genes, proteins, lipids and various biological events are considered extremely valuable and convenient tools for the systematic investigation of PTMs. However, there is no database which dynamically draws functional networks related to glycans.  相似文献   

7.

Background

Carbohydrate-binding agents (CBAs) are potent antiretroviral compounds that target the N-glycans on the HIV-1 envelope glycoproteins. The development of phenotypic resistance to CBAs by the virus is accompanied by the deletion of multiple N-linked glycans of the surface envelope glycoprotein gp120. Recently, also an N-glycan on the transmembrane envelope glycoprotein gp41 was shown to be deleted during CBA resistance development.

Results

We generated HIV-1 mutants lacking gp41 N-glycans and determined the influence of these glycan deletions on the viral phenotype (infectivity, CD4 binding, envelope glycoprotein incorporation in the viral particle and on the transfected cell, virus capture by DC-SIGN+ cells and transmission of DC-SIGN-captured virions to CD4+ T-lymphocytes) and on the phenotypic susceptibility of HIV-1 to a selection of CBAs. It was shown that some gp41 N-glycans are crucial for the infectivity of the virus. In particular, lack of an intact N616 glycosylation site was shown to result in the loss of viral infectivity of several (i.e. the X4-tropic IIIB and NL4.3 strains, and the X4/R5-tropic HE strain), but not all (i.e. the R5-tropic ADA strain) studied HIV-1 strains. In accordance, we found that the gp120 levels in the envelope of N616Q mutant gp41 strains NL4.3, IIIB and HE were severely decreased. In contrast, N616Q gp41 mutant HIV-1ADA contained gp120 levels similar to the gp120 levels in WT HIV-1ADA virus. Concomitantly deleting multiple gp41 N-glycans was often highly detrimental for viral infectivity. Using surface plasmon resonance technology we showed that CBAs have a pronounced affinity for both gp120 and gp41. However, the antiviral activity of CBAs is not dependent on the concomitant presence of all gp41 glycans. Single gp41 glycan deletions had no marked effects on CBA susceptibility, whereas some combinations of two to three gp41 glycan-deletions had a minor effect on CBA activity.

Conclusions

We revealed the importance of some gp41 N-linked glycans, in particular the N616 glycan which was shown to be absolutely indispensable for the infectivity potential of several virus strains. In addition, we demonstrated that the deletion of up to three gp41 N-linked glycans only slightly affected CBA susceptibility.
  相似文献   

8.

Background

Complex carbohydrate structures, glycans, are essential components of glycoproteins, glycolipids, and proteoglycans. While individual glycan structures including the SSEA and Tra antigens are already used to define undifferentiated human embryonic stem cells (hESC), the whole spectrum of stem cell glycans has remained unknown. We undertook a global study of the asparagine-linked glycoprotein glycans (N-glycans) of hESC and their differentiated progeny using MALDI-TOF mass spectrometric and NMR spectroscopic profiling. Structural analyses were performed by specific glycosidase enzymes and mass spectrometric fragmentation analyses.

Results

The data demonstrated that hESC have a characteristic N-glycome which consists of both a constant part and a variable part that changes during hESC differentiation. hESC-associated N-glycans were downregulated and new structures emerged in the differentiated cells. Previously mouse embryonic stem cells have been associated with complex fucosylation by use of SSEA-1 antibody. In the present study we found that complex fucosylation was the most characteristic glycosylation feature also in undifferentiated hESC. The most abundant complex fucosylated structures were Lex and H type 2 antennae in sialylated complex-type N-glycans.

Conclusion

The N-glycan phenotype of hESC was shown to reflect their differentiation stage. During differentiation, hESC-associated N-glycan features were replaced by differentiated cell-associated structures. The results indicated that hESC differentiation stage can be determined by direct analysis of the N-glycan profile. These results provide the first overview of the N-glycan profile of hESC and form the basis for future strategies to target stem cell glycans.  相似文献   

9.

Background

A variety of N-glycans attached to protein are known to involve in many important biological functions. Endoplasmic reticulum (ER) and Golgi localized enzymes are responsible to this template-independent glycan synthesis resulting glycoforms at each asparagine residues. The regulation mechanism such glycan synthesis remains largely unknown.

Methodology/Principal Findings

In order to investigate the relationship between glycan structure and protein conformation, we analyzed a glycoprotein of Drosophila melanogaster, chaoptin (Chp), which is localized in photoreceptor cells and is bound to the cell membrane via a glycosylphosphatidylinositol anchor. Detailed analysis based on mass spectrometry revealed the presence of 13 N-glycosylation sites and the composition of the glycoform at each site. The synthetic pathway of glycans was speculated from the observed glycan structures and the composition at each N-glycosylation site, where the presence of novel routes were suggested. The distribution of glycoforms on a Chp polypeptide suggested that various processing enzymes act on the exterior of Chp in the Golgi apparatus, although virtually no enzyme can gain access to the interior of the horseshoe-shaped scaffold, hence explaining the presence of longer glycans within the interior. Furthermore, analysis of Chp from a mutant (RNAi against dolichyl-phosphate α-d-mannosyltransferase), which affects N-glycan synthesis in the ER, revealed that truncated glycan structures were processed. As a result, the distribution of glycoforms was affected for the high-mannose-type glycans only, whereas other types of glycans remained similar to those observed in the control and wild-type.

Conclusions/Significance

These results indicate that glycan processing depends largely on the backbone structure of the parent polypeptide. The information we obtained can be applied to other members of the LRR family of proteins.  相似文献   

10.

Background

Little is known about enzymatic N-glycosylation in type 2 diabetes, a common posttranslational modification of proteins influencing their function and integrating genetic and environmental influences. We sought to gain insights into N-glycosylation to uncover yet unexplored pathophysiological mechanisms in type 2 diabetes.

Methods

Using a high-throughput MALDI-TOF mass spectrometry method, we measured N-glycans in plasma samples of the DiaGene case-control study (1583 cases and 728 controls). Associations were investigated with logistic regression and adjusted for age, sex, body mass index, high-density lipoprotein-cholesterol, non-high-density lipoprotein-cholesterol, and smoking. Findings were replicated in a nested replication cohort of 232 cases and 108 controls.

Results

Eighteen glycosylation features were significantly associated with type 2 diabetes. Fucosylation and bisection of diantennary glycans were decreased in diabetes (odds ratio (OR)?=?0.81, p?=?1.26E-03, and OR?=?0.87, p?=?2.84E-02, respectively), whereas total and, specifically, alpha2,6-linked sialylation were increased (OR?=?1.38, p?=?9.92E-07, and OR?=?1.40, p?=?5.48E-07). Alpha2,3-linked sialylation of triantennary glycans was decreased (OR?=?0.60, p?=?6.38E-11).

Conclusions

While some glycosylation changes were reflective of inflammation, such as increased alpha2,6-linked sialylation, our finding of decreased alpha2,3-linked sialylation in type 2 diabetes patients is contradictory to reports on acute and chronic inflammation. Thus, it might have previously unreported immunological implications in type 2 diabetes.

General significance

This study provides new insights into N-glycosylation patterns in type 2 diabetes, which can fuel studies on causal mechanisms and consequences of this complex disease.  相似文献   

11.

Background

Lectin immunosorbant assays (LISAs) have been widely used for analyzing protein glycosylation. However, the analysis of serum samples by LISAs could suffer from high sample-dependent background noise. The aim of this study is to develop a differential lectin immunosorbant assay (dLISA) with reduced background interferences.

Methods

For the analysis of protein glycosylation, dLISA establishes a dose–response curve for every serum sample. The sample is split into five aliquots. Four aliquots undergo differential removal of the glycoprotein of interest by immunoprecipitation. Then, all five aliquots are subject to two measurements: protein by immunoassay and protein glycans by LISA. A dose–response curve is established by plotting glycans signals on the y-axis and protein levels on the x-axis for all the aliquots. Slope of the curve, calculated by linear progression analysis and expressed as fluorescence per concentration of protein, is used for the measurement of protein glycosylation in the serum sample.

Results/conclusions

To demonstrate the feasibility of the dLISA approach, we used recombinant, fucosylated tissue inhibitor of metallopeptidase 1 (TIMP-1) as the target glycoprotein. Magnetic beads based TIMP1 immunoassay and TIMP-1 UEA LISA were developed for the measurement of TIMP1 protein and terminal α1, 2 fucosylated glycans on TIMP1, respectively. Serum samples supplemented with differentially fucosylated recombinant TIMP-1 were used to demonstrate that the slopes measured the TIMP-1 fucosylation, and were less prone to background interference.  相似文献   

12.

Background

Most proteins are glycosylated, with glycans being integral structural and functional components of a glycoprotein. In contrast to polypeptides, which are fully encoded by the corresponding gene, glycans result from a dynamic interaction between the environment and a network of hundreds of genes.

Scope of review

Recent developments in glycomics, genomics and epigenomics are discussed in the context of an evolutionary advantage for higher eukaryotes over microorganisms, conferred by the complexity and adaptability which glycosylation adds to their proteome.

Major conclusions

Inter-individual variation of glycome composition in human population is large; glycome composition is affected by both genes and environment; epigenetic regulation of “glyco-genes” has been demonstrated; and several mechanisms for transgenerational inheritance of epigenetic marks have been documented.

General significance

Epigenetic recording of acquired characteristics and their transgenerational inheritance could be important mechanisms used by higher organisms to compete or collaborate with microorganisms.  相似文献   

13.

Background

Schistosomiasis (bilharzia) is a chronic and potentially deadly parasitic disease that affects millions of people in (sub)tropical areas. An important partial immunity to Schistosoma infections does develop in disease endemic areas, but this takes many years of exposure and maturation of the immune system. Therefore, children are far more susceptible to re-infection after treatment than older children and adults. This age-dependent immunity or susceptibility to re-infection has been shown to be associated with specific antibody and T cell responses. Many antibodies generated during Schistosoma infection are directed against the numerous glycans expressed by Schistosoma. The nature of glycan epitopes recognized by antibodies in natural schistosomiasis infection serum is largely unknown.

Methodology/Principal Findings

The binding of serum antibodies to glycans can be analyzed efficiently and quantitatively using glycan microarray approaches. Very small amounts of a large number of glycans are presented on a solid surface allowing binding properties of various glycan binding proteins to be tested. We have generated a so-called shotgun glycan microarray containing natural N-glycan and lipid-glycan fractions derived from 4 different life stages of S. mansoni and applied this array to the analysis of IgG and IgM antibodies in sera from children and adults living in an endemic area. This resulted in the identification of differential glycan recognition profiles characteristic for the two different age groups, possibly reflecting differences in age or differences in length of exposure or infection.

Conclusions/Significance

Using the shotgun glycan microarray approach to study antibody response profiles against schistosome-derived glycan elements, we have defined groups of infected individuals as well as glycan element clusters to which antibody responses are directed in S. mansoni infections. These findings are significant for further exploration of Schistosoma glycan antigens in relation to immunity.  相似文献   

14.

Background

With the recent advent of glycomics, many medically relevant glycans have been discovered. Sulfated fucans (SFs) and sulfated galactans (SGs) are one of these classes of glycans with increasing interest to both glycomics and medicine. Besides having very unique structures, some of these molecules exhibit a broad range of pharmacological actions. In certain cases, high levels of effectiveness may be reached when the proper structural requirements are found.

Scope of review

Here, we cover the fundamental biochemical mechanisms of some of these medicinal properties. We particularly focus on the beneficial activities of SFs and SGs in inflammation, hemostasis, vascular biology, and cancer.

Major conclusions

In these clinical systems, intermolecular complexes directly driven by electrostatic interactions of SFs and SGs with P- and L-selectins, chemokines, antithrombin, heparin cofactor II, thrombin, factor Xa, bFGF, and VEGF, overall govern the resultant therapeutic effects. In spite of that, the structural features of SFs and SGs have shown to be essential determinants for formation and stability of those molecular complexes, which consequently account to the differential levels of the biomedical responses.

General significance

Accurate structure–function relationships have mostly been achieved when SFs and SGs of well-defined structures are used for study. Therefore, these types of glycans have become of great usefulness to identify the chemical requirements needed to achieve satisfactory clinical responses.  相似文献   

15.
16.

Introduction

Glycans have unique characteristics that are significantly different from nucleic acids and proteins in terms of biosynthesis, structures, and functions. Moreover, their isomeric nature and the complex linkages between residues have made glycan analysis a challenging task. Disease development and progression are usually associated with alternations in glycosylation on tissue proteins and/or blood proteins. Glycans released from tissue/blood proteins hence provide a valuable source of biomarkers. In this postgenome era, glycomics is an emerging research field. Glycome refers to a repertoire of glycans in a tissue/cell type, while glycomics is the study of glycome. In the past few years, attempts have been made to develop novel methodologies for quantitative glycomic profiling and to identify potential glycobiomarkers. It can be foreseen that glycomics holds the promise for biomarker discovery. This review provides an overview of the unique features of glycans and the historical applications of such features to biomarker discovery.

Future Prospective

The concept of glycomics and its recent advancement and future prospective in biomarker research are reviewed. Above all, there is no doubt that glycomics is gaining momentum in biomarker research.  相似文献   

17.

Background

Griffithsin, a 121-residue protein isolated from a red algal Griffithsia sp., binds high mannose N-linked glycans of virus surface glycoproteins with extremely high affinity, a property that allows it to prevent the entry of primary isolates and laboratory strains of T- and M-tropic HIV-1. We used the sequence of a portion of griffithsin''s sequence as a design template to create smaller peptides with antiviral and carbohydrate-binding properties.

Methodology/Results

The new peptides derived from a trio of homologous β-sheet repeats that comprise the motifs responsible for its biological activity. Our most active antiviral peptide, grifonin-1 (GRFN-1), had an EC50 of 190.8±11.0 nM in in vitro TZM-bl assays and an EC50 of 546.6±66.1 nM in p24gag antigen release assays. GRFN-1 showed considerable structural plasticity, assuming different conformations in solvents that differed in polarity and hydrophobicity. Higher concentrations of GRFN-1 formed oligomers, based on intermolecular β-sheet interactions. Like its parent protein, GRFN-1 bound viral glycoproteins gp41 and gp120 via the N-linked glycans on their surface.

Conclusion

Its substantial antiviral activity and low toxicity in vitro suggest that GRFN-1 and/or its derivatives may have therapeutic potential as topical and/or systemic agents directed against HIV-1.  相似文献   

18.

Background

Staphylococcus aureus (S. aureus) is a common pathogen capable of causing life-threatening infections. Staphylococcal superantigen-like protein 5 (SSL5) has recently been shown to bind to platelet glycoproteins and induce platelet activation. This study investigates further the interaction between SSL5 and platelet glycoproteins. Moreover, using a glycan discovery approach, we aim to identify potential glycans to therapeutically target this interaction and prevent SSL5-induced effects.

Methodology/Principal Findings

In addition to platelet activation experiments, flow cytometry, immunoprecipitation, surface plasmon resonance and a glycan binding array, were used to identify specific SSL5 binding regions and mediators. We independently confirm SSL5 to interact with platelets via GPIbα and identify the sulphated-tyrosine residues as an important region for SSL5 binding. We also identify the novel direct interaction between SSL5 and the platelet collagen receptor GPVI. Together, these receptors offer one mechanistic explanation for the unique functional influences SSL5 exerts on platelets. A role for specific families of platelet glycans in mediating SSL5-platelet interactions was also discovered and used to identify and demonstrate effectiveness of potential glycan based inhibitors in vitro.

Conclusions/Significance

These findings further elucidate the functional interactions between SSL5 and platelets, including the novel finding of a role for the GPVI receptor. We demonstrate efficacy of possible glycan-based approaches to inhibit the SSL5-induced platelet activation. Our data warrant further work to prove SSL5-platelet effects in vivo.  相似文献   

19.

Background

Nearly all membrane and secreted proteins, as well as numerous intracellular proteins are glycosylated. However, contrary to proteins which are defined by their individual genetic templates, glycans are encoded in a complex dynamic network of hundreds of genes which participate in the complex biosynthetic pathway of protein glycosylation.

Scope of review

This review summarizes present knowledge about the importance of alternative glycosylation of IgG and other proteins.

Major conclusions

Numerous proteins depend on correct glycosylation for proper function. Very good example for this is the alternative glycosylation of IgG whose effector functions can be completely changed by the addition or removal of a single monosaccharide residue from its glycans.

General significance

The change in the structure of a protein requires mutations in DNA and subsequent selection in the next generation, while even slight alterations in activity or intracellular localization of one or more biosynthetic enzymes are sufficient for the creation of novel glycan structures, which can then perform new functions. Glycome composition varies significantly between individuals, which makes them slightly or even significantly different in their ability to execute specific molecular pathways with numerous implications for development and progression of various diseases. This article is part of a Special Issue entitled Glycoproteomics.  相似文献   

20.

Background

Glycosylation is highly susceptible to changes of the physiological conditions, and accordingly, is a potential biomarker associated with several diseases and/or longevity. Semi-supercentenarians (SSCs; older than 105?years) are thought to be a model of human longevity. Thus, we performed glycoproteomics using plasma samples of SSCs, and identified proteins and conjugated N-glycans that are characteristic of extreme human longevity.

Methods

Plasma proteins from Japanese semi-supercentenarians (SSCs, 106–109?years), aged controls (70–88?years), and young controls (20–38?years) were analysed by using lectin microarrays and liquid chromatography/mass spectrometry (LC/MS). Peak area ratios of glycopeptides to corresponding normalising peptides were subjected to orthogonal projections to latent structures discriminant analysis (OPLS-DA). Furthermore, plasma levels of clinical biomarkers were measured.

Results

We found two lectins such as Phaseolus vulgaris, and Erythrina cristagalli (ECA), of which protein binding were characteristically increased in SSCs. Peak area ratios of ECA-enriched glycopeptides were successfully discriminated between SSCs and controls using OPLS-DA, and indicated that tri-antennary and sialylated N-glycans of haptoglobin at Asn207 and Asn211 sites were characterized in SSCs. Sialylated glycans of haptoglobin are a potential biomarker of several diseases, such as hepatocellular carcinoma, liver cirrhosis, and IgA-nephritis. However, the SSCs analysed here did not suffer from these diseases.

Conclusions

Tri-antennary and sialylated N-glycans on haptoglobin at the Asn207 and Asn211 sites were abundant in SSCs and characteristic of extreme human longevity.

General significance

We found abundant glycans in SSCs, which may be associated with human longevity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号