首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The energy of intermediates in fusion of phospholipid bilayers is sensitive to kappa(m), the saddle splay (Gaussian curvature) elastic modulus of the lipid monolayers. The value kappa(m) is also important in understanding the stability of inverted cubic (Q(II)) and rhombohedral (R) phases relative to the lamellar (L(alpha)) and inverted hexagonal (H(II)) phases in phospholipids. However, kappa(m) cannot be measured directly. It was previously measured by observing changes in Q(II) phase lattice dimensions as a function of water content. Here we use observations of the phase behavior of N-mono-methylated dioleoylphosphatidylethanolamine (DOPE-Me) to determine kappa(m). At the temperature of the L(alpha)/Q(II) phase transition, T(Q), the partial energies of the two phases are equal, and we can express kappa(m) in terms of known lipid monolayer parameters: the spontaneous curvature of DOPE-Me, the monolayer bending modulus kappa(m), and the distance of the monolayer neutral surface from the bilayer midplane, delta. The calculated ratio kappa(m)/kappa(m) is -0.83 +/- 0.08 at T(Q) approximately 55 degrees C. The uncertainty is due primarily to uncertainty in the value of delta for the L(alpha) phase. This value of kappa(m)/kappa(m) is in accord with theoretical expectations, including recent estimates of the value required to rationalize observations of rhombohedral (R) phase stability in phospholipids. The value kappa(m) substantially affects the free energy of formation of fusion intermediates: more energy (tens of k(B)T) is required to form stalks and fusion pores (ILAs) than estimated solely on the basis of the bending elastic energy. In particular, ILAs are much higher in energy than previously estimated. This rationalizes the action of fusion-catalyzing proteins in stabilizing nascent fusion pores in biomembranes; a function inferred from recent experiments in viral systems. These results change predictions of earlier work on ILA and Q(II) phase stability and L(alpha)/Q(II) phase transition mechanisms. To our knowledge, this is the first determination of the saddle splay (Gaussian) modulus in a lipid system consisting only of phospholipids.  相似文献   

2.
Spectroscopy of horseradish peroxidase with and without the substrate analog, benzohydroxamic acid, was monitored in a glycerol/water solvent as a function of temperature. It was determined from the water infrared (IR) absorption that the solvent has a glass transition at 170-180 K. In the absence of substrate, both the heme optical Q(0,0) absorption band and the IR absorption band of CO bound to heme broaden markedly upon heating from 10-300 K. The Q(0,0) band broadens smoothly in the whole temperature interval, whereas the IR bandwidth is constant in the glassy matrix and increases from 7 to 16 cm(-1) upon heating above the glass transition. Binding of substrate strongly diminishes temperature broadening of both the bands. The results are consistent with the view that the substrate strongly reduces the amplitude of motions of amino acids forming the heme pocket. The main contribution to the Q(0,0) bandwidth arises from the heme vibrations that are not affected by the phase transition. The CO band thermal broadening stems from the anharmonic coupling with motions of the heme environment, which, in the glassy state, are frozen in. Unusually strong temperature broadening of the CO band is interpreted to be caused by thermal population of a very flexible excited conformational substrate. Analysis of literature data on the thermal broadening of the A(0) band of Mb(CO) (Ansari et al., 1987. Biophys. Chem. 26:337-355) shows that such a state presents itself also in myoglobin.  相似文献   

3.
The effect of substances of different nature on the thermodynamic characteristics of dimyristoylphosphatidylcholine (DMPC) phase transition by the differential scanning microcalorimetry has been studied. The substances disposed in hydrophobic part of membrane--alpha-tocopherol, ubiquinone Q10, ionol and vitamin K3 cause the decrease of enthalpy and cooperativity of phase transition. The substances which have the side hydrocarbon chain (tocopherol and ubiquinone Q10) compared with ones without it (ionol and vitamin K3) and reduced quinones (Q10 and vitamin K3) compared with the oxidized ones have stronger influence on the enthalpy and cooperativity of transition. The inclusion of the local anesthetic dicaine disposed mainly in the zone of polar heads of phospholipids into DMPC membranes decreases the temperature of phase transition considerably and practically does not change the cooperativity. A possibility to use the method of differential scanning microcalorimetry to estimate the localization of membrane tropic substances within lipid bilayer is under discussion.  相似文献   

4.
The sperm whale myoglobin mutant H64V, where the distal histidine is mutated to valine, is known to be five coordinated in the ferric state at room temperature and physiological pH. A change of the ligation in this H64V-Mbmet has been observed by optical absorption spectroscopy as a function of temperature from 20 K to 300 K. Above the dynamical transition at about 180 K one observes the temperature-dependent equilibrium between five- and six-ligated heme. Below the dynamical transition the equilibrium is frozen-in at about 50% of six-coordinate molecules. The water ligation of the iron occurs at temperatures where protein-specific motions are present, as monitored by M?ssbauer spectroscopy. The X-ray structures of H64V-Mbmet at 300 K and 110 K are reported with a resolution of 1.5 A and 1.3 A, respectively. The measurements at high resolutions are possible owing to crystallization in the space group P2(1), whereas all mutant myoglobins studies up to now have been carried out with crystals in the space group P6. The overall structure at both temperatures is very close to the native myoglobin. The binding of water at the sixth coordination site at lower temperatures is possible owing to a stabilizing water network extending from the protein surface to the active centre. The reduction of the H64V-Mbmet by electrons obtained by X-ray irradiation of the water-glycerol solvent at 85 K produces an intermediate low-spin state of the water-ligated molecules where Fe(II) retains the six-fold coordination. M?ssbauer spectroscopy shows that the relaxation of the metastable low-spin state to high-spin H64V-Mbdeoxy with dissociation of the Fe(II)-H(2)O bond starts at about 115 K and is completed at about 170 K. Differences in the dynamics properties of the native and mutant myoglobin and the connection to the dynamical transition around 180 K are discussed.  相似文献   

5.
Abstract

We report both experimental and molecular simulation studies of the melting behavior of aniline confined within an activated carbon fiber having slit-shaped pores. Dielectric relaxation spectroscopy is used to determine the transition temperatures and also the dielectric relaxation times over the temperature range 240 to 340 K. For the confined system two transitions were observed, one at 298 K and a second transition at 324 K. The measured relaxation times indicate that the low temperature phase (below 298 K) is a crystalline or partially crystalline solid phase, while that above 324 K is a liquid-like phase; for the intermediate phase, in the range 298–324 K, the relaxation times are of the order 10?5s, which is typical of a hexatic phase. The melting temperature of the confined system is well above that of bulk aniline, which is 267 K. The simulations are carried out using the Grand Canonical Monte Carlo method together with Landau free energy calculations, and phase transitions are located as state points where the grand free energies of two confined phases are equal. The nature of these phases is determined by analysis of in-plane pair positional and orientational correlation functions. The simulations also show two transitions. The first is a transition from a two-dimensional hexagonal crystal phase to a hexatic phase at 296 K; the second transition is from the hexatic to a liquid-like phase at 336 K. Confinement within the slit-shaped pores appears to stabilize the hexatic phase, which is the stable phase over a wider temperature range than for quasi-two-dimensional thin films.  相似文献   

6.
J M Sanz  P García  J L García 《Biochemistry》1992,31(36):8495-8499
The role of carboxylic amino acids Asp-9 and Glu-36 in the activity of CPL1 lysozyme was investigated by site-directed mutagenesis. The enzymatic activity of the single mutants D9E, D9N, D9H, D9K, D9A, E36D, E36Q, E36K, and E36A and of the double mutant D9A-E36A was analyzed using a highly sensitive radioactive assay. All mutants but D6K showed detectable activities. Interestingly, the mutants E36D and E36Q retained 67% and 37% activity, respectively. Amino acid replacements at position 9 turned out to be more critical for activity than at position 36. In analogy to the mechanism described for hen egg-white lysozyme, where the proton donor play a central role, we propose that, in the CPL1 lysozyme, Asp-9 might act as the proton donor for activation of the substrate, and Glu-36 could help in the stabilization of the intermediate oxocarbocation. The residual activity of lysozyme mutants lacking one or two of the acidic amino acids may be explained by the participation of a water molecule as proton donor and/or to electrostatic contributions in the active center stabilizing the transition state of the reaction. Our results are in agreement with the hypothesis that enzymes have been optimized during evolution from an ancestral protein able to bind more tightly the transition state of the substrate than the substrate itself, by the acquisition of amino acids serving a function in catalysis.  相似文献   

7.
Xu Q  Gunner MR 《Biochemistry》2001,40(10):3232-3241
In protein, conformational changes are often crucial for function but not easy to observe. Two functionally relevant conformational intermediate states of photosynthetic reaction center protein (RCs) are trapped and characterized at low temperature. RCs frozen in the dark do not allow electron transfer from the reduced primary quinone, Q(A)(-), to the secondary quinone, Q(B). In contrast, RCs frozen under illumination in the product (P(+)Q(A)Q(B)(-)) state, with the oxidized electron donor, P(+), and reduced Q(B)(-), return to the ground state at cryogenic temperature in a conformation that allows a high yield of Q(B) reduction. Thus, RCs frozen under illumination are found to be trapped above the ground state in a conformation that allows product formation. When the temperature is raised above 120 K, the protein relaxes to an inactive conformation which is different from the RCs frozen in the dark. The activation energy for this change is 87 +/- 8 meV, and the active and inactive states differ in energy by only 16 +/- 3 meV. Thus, there are several conformational substates along the reaction coordinate with different transition temperatures. The ground state spectra of the RCs in active and inactive conformations report differences in the intraprotein electrostatic field, demonstrating that the dipole or charge distribution has changed. In addition, the electrochromic shift associated with the Q(A)(-) to Q(B) electron transfer at low temperature was characterized. The electron-transfer rate from Q(B)(-) to P(+) was measured at cryogenic temperature and is similar to the rate at room temperature, as expected for an exothermic, electron tunneling reaction in RCs.  相似文献   

8.
The stochastic theory of a nonlinear game is presented which incorporates some of the essential properties of living systems: metabolism, reproduction and mutability. The steady state distribution function as well as the complete time development are given explicitly. The second law of thermodynamics is generalized to a certain class of nonequilibrium systems. An order parameter is introduced as a measure of the system's internal organization. From the point of view of phase transition theory, the model exhibits a transition at the absolute zero of temperature, with critical behaviour showing up in the low temperature region.  相似文献   

9.
The mechanism of the subtransitions (Lc to L beta') in L-dipalmitoylphosphatidylcholine bilayers in excess water has been investigated by time-resolved X-ray diffraction using synchrotron radiation. The temperature dependence of the diffraction patterns closely correlate with the asymmetric excess specific heat variation recorded by differential scanning calorimetry. During the subtransition two prominent wide-angle reflections, characteristic of the low-temperature crystalline phase, Lc, gradually change such that a sharp peak at a spacing of 0.430 nm decreases in intensity and ultimately disappears while a broader peak initially located at 0.375 nm progressively shifts to an eventual spacing of 0.410 nm. This behaviour is interpreted as a lateral deformation of the acyl chain packing subcell as the chains begin to rotate until a state is reached where the chains pack on a regular hexagonal array characteristic of the L beta phase. An increase in lamellar repeat distance from 6.0 to 6.4 nm takes place simultaneously with the acyl chain rearrangement at relatively low (5 K/min) as well as high (6 K/s) heating rates. As judged from the shape of the wide-angle peak, transformation to L beta' phase occurs some minutes after transition to the L beta phase. The X-ray data characterise the subtransition as a continuous (second order) phase transition in which a presumably orthorhombic subcell is transformed into a hexagonal subcell in a gradual process. In temperature jump experiments at 6 K/s between 0 degree C and 80 degrees C the relaxation time of the subtransition was found to be about 5 s while the relaxation time of the main gel to liquid-crystalline transition was about 2 s.  相似文献   

10.
The effects of the Ca2+ ionophore, A23187, on the contraction and membrane action potential of the isolated guinea-pig papillary muscle were examined at various temperatures (30-16 degrees C) and compared to those of isoprenaline and a high calcium medium. A23187 caused a marked positive inotropic effect with a significant prolongation of the action potential duration at an early repolarization phase but not a late repolarization phase at normal temperature (30 degrees C). Such an inotropic effect was completely abolished at low temperature (16 degrees C) where a marked positive inotropic effect of isoprenaline (5 X 10(-8) M) and a high calcium medium (6.2 mM) still remained. These results suggest that the cardiac responsiveness to A23187 was sensitive to a low temperature at which a membrane lipid phase transition may occur.  相似文献   

11.
The NMR technique of 13C off-resonance rotating frame spin-lattice relaxation, which provides an accurate assessment of the effective rotational correlation time (τ0,eff) for macromolecular rotational diffusion, was applied to the study of γ-crystallin association as a function of protein concentration and temperature. Values of the effective rotational correlation time for γ-crystallin rotational diffusion were obtained at moderate to high protein concentrations (80–350 mg/ml) and at temperatures above, and below, the cold cataract phase transition temperature. With increasing concentration γ-crystallin was observed to increasingly associate as reflected by larger values of τ0,eff Decreasing temperature in the range of 35 to 22°C was found to result in no change in the temperature corrected value of τ0,eff at a γ-crystallin concentration of 80 mg/ml, whereas at temperatures of 18°C or below, this parameter was approx. twofold larger, suggesting the occurrence of a well defined phase transition, which correlated well with the cold cataract phase transition temperature. At higher protein concentrations, by contrast, τ0,eff (temperature corrected) was found to increase by approx. 1.6- to 2-times in the temperature interval 35°C to 22°C, a result consistent with the dependence of the cold cataract phase transition temperature on γ-crystallin concentration. Analysis of intensity ratio dispersion curves, using an assumed model of isodesmic association, permitted the estimation of the association constant characterizing the aggregation under particular conditions of concentration and temperature. The significant increase in the value of the association constant with moderate increases in protein concentration was rationalized by invoking the effect of ‘macromolecular crowding’. The results obtained in this study suggest that in the intact lens, where high protein concentrations prevail, γ-crystallin is unlikely to be found in the monomeric state, but more likely, as a significantly aggregated species, representing a broad molecular weight distribution.  相似文献   

12.
Effects of threonine substitution by glutamine at position 256 in the pore of the KAT1 channel have been investigated by voltage-clamp, using heterologous gene expression in Xenopus oocytes. The major discrepancy in T256Q from the wild-type channel (wt) was cation specific. While K(+) currents were reduced in a largely scalar fashion, the NH(4)(+) current exhibited slow, voltage-dependent inhibition during hyperpolarization. The same effects could be induced in wt, or intensified in T256Q, by addition of the impermeant cation methylammonium (MA(+)) to the bath. This stresses that both the mutation and MA(+) affect a mechanism already present in the wt. Assuming that current inhibition could be described as entry of the channel into an inactive state, we modeled in both wt and in T256Q the relaxation kinetics of the clamp currents by a C-O-I gating scheme, where C (closed) and I (inactivated) are nonconductive states, and O is an open state allowing K(+) and NH(4)(+) passage. The key reaction is the transition I-O. This cation-sensitive transition step ensures release of the channel from the inactive state and is approximately 30 times smaller in T256Q compared to wt. It can be inhibited by external MA(+) and is stimulated strongly by K(+) and weakly by NH(4)(+). This sensitivity of gating to external cations may prevent K(+) leakage from cation-starved cells.  相似文献   

13.
The interaction of (+)-catechin with a lipid bilayer was examined by the spin probe method. The spin probe, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), was dissolved in an aqueous dipalmitoylphosphatidylcholine (DPPC) dispersion containing (+)-catechin. The temperature dependence of the TEMPO parameter was measured. The increase of this parameter due to pretransition was eliminated by the addition of (+)-catechin, suggesting that it was adsorbed to the lipid membrane surface in the gel state, which hindered the change of the membrane from a flat to wavy structure. In the temperature region of the main transition, the TEMPO parameter increased rapidly, then gradually with increasing temperature, which could be explained by the eutectic phase diagram. The rotational correlation time of a spin probe 16-doxylstearic acid and the order parameter of 5-doxylstearic acid in the aqueous dispersion system of egg yolk phosphatidylcholine revealed that the motion of the alkyl chain in the liquid crystal state was hindered in the center of the membrane as well as near the surface by the adsorption of (+)-catechin.  相似文献   

14.
Computations show that cathodal rheobase increases with temperature from 0 degrees C to 30 degrees C. Anodal rheobase (stimulation at the end of an indefinitely long anodal pulse) also increases with temperature, but goes to infinity at a critical temperature 17.13 degrees C, above which such excitation is impossible. For a stimulus consisting of any step change of current from I0 to I1, a threshold curve of I1 is plotted against I0. As the temperature increases, this curve rises. Its intersection with the horizontal axis, which determines the anodal rheobase, goes to infinity at the critical temperature. This phenomenon is caused by the saturation of the variables m, h, n for strongly hyperpolarized potentials, combined with the relative speeding up of the inhibitory process with increasing temperature. The threshold charge Q in an instantaneous anodal current pulse (of zero duration) goes to infinity at the same temperature, with a similar explanation in terms of threshold curves in the I1 vs. Q plane. The fact that the critical temperature for both cases is the same is generalized by the conjecture that for any anodal current waveform whatever, as its amplitude approaches infinity, the trajectory in the phase space following its cessation approaches the same limiting trajectory. This limiting trajectory changes from suprathreshold to subthreshold at the critical temperature.  相似文献   

15.
Two primary biochemical reactions in seed ageing (lipid peroxidation and non-enzymatic protein glycosylation with reducing sugars) have been studied under different seed water contents and storage temperatures, and the role of the glassy state in retarding biochemical deterioration examined. The viability loss of Vigna radiata seeds during storage is associated with Maillard reactions; however, the contribution of primary biochemical reactions varies under different storage conditions. Biochemical deterioration and viability loss are greatly retarded in seeds stored below a high critical temperature (approximately 40 degrees C above glass transition temperature). This high critical temperature corresponds to the cross-over temperature (T(c)) of glass transition where molecular dynamics changes from a solid-like system to a normal liquid system. The data show that seed ageing slows down significantly, even before seed tissue enters into the glassy state.  相似文献   

16.
This paper describes the effect of the kappa/iota-ratio on the physical properties of kappa/iota-hybrid carrageenans (synonyms: kappa-2, kappa-2, weak kappa, weak gelling kappa). To this end, a series of kappa/iota-hybrid carrageenans ranging from almost homopolymeric kappa-carrageenan (98 mol-% kappa-units) to almost homopolymeric-carrageenan (99 mol-% iota-units) have been extracted from selected species of marine red algae (Rhodophyta). The kappa/iota-ratio of these kappa/iota-hybrids was determined by NMR spectroscopy. Their rheological properties were determined by small deformation oscillatory rheology. The gel strength (storage modulus, G') of the kappa/iota-hybrids decreases with decreasing kappa-content. On the other hand, the gelation temperature of the kappa-rich kappa/iota-hybrids is independent of their composition. This allows one to control the gel strength independent of the gelation or melting temperature. The conformational order-disorder transition of the kappa/iota-hybrids was studied using optical rotation and high-sensitivity differential scanning calorimetry. High-sensitivity DSC showed that the total transition enthalpy of the kappa/iota-hybrids goes through a minimum at 60 mol-% kappa-units, whereas for the mixture of kappa- and iota-carrageenan, the total transition enthalpy is a linear function of the composition. With respect to the ordering capability, the kappa/iota-hybrid carrageenans seem to behave as random block copolymers with length sequence distributions truncated from the side of the small lengths. Intrinsic thermodynamic properties (e.g., transition temperature and enthalpy) of kappa- and iota-sequences in these copolymers are close to those of their parent homopolymers. The critical sequence length for kappa-sequences is 2-fold of that for iota-sequences.  相似文献   

17.
We report the effect of surface-screening parameter of Yukawa potential model on vapour–liquid phase coexistence and critical-point properties of slit–pore-confined Yukawa fluid, using grand canonical transition-matrix Monte Carlo along with the histogram reweighting method. The effect of surface-screening parameter on the vapour–phase coexistence density is insignificant for the studied system. On the other hand, significant effect of surface-screening parameter is observed on liquid phase coexistence density. With increasing surface-screening parameter, liquid phase coexistence density decreases. Critical-point properties have shown monotonic decreasing trends with increase in surface-screening parameter. Moreover, the effect of change of surface-screening parameter is least on critical temperature changes as compared to critical density and critical pressure changes for the studied Yukawa system in this work.  相似文献   

18.
Argument still continues about what properties of a plant organ the pressure chamber measures. A mechanical (as opposed to a thermodynamic) analysis is made of the system squeezed by the pressurized gas, the non-gaseous part of the leaf. The boundary of the system is defined so that it remains at constant mass, and constant density is assumed, during the squeeze. This is equivalent to assuming constant volume. On those assumptions, it is shown that the liquid is brought to the cut surface by a change of shape of the system. Generic mechanical principles are then used to deduce a priori, a quantitative interpretation of the balance pressure. The formal mechanical interpretation involves two variables, the interfacial tension and the change in surface area, which cannot currently be measured. Instead of these, we used two related variables which can be measured, the mass fraction of water in the leaf (Q) and the maximum mass fraction of water at full saturation (Qx) to deduce an approximate mechanical interpretation. When Q is close to Qx, we deduced that the balance pressure (Pb) required for the shape change should be approximately proportional to the reduction in mass in changing from Qx to Q, a variable called the relative water loss (RWL). The constant of proportionality (kappa) is a basic characteristic of the type of leaf used, and the final relation, Pb=kappa (RWL) is called Relation A. We then deduce that the constant kappa should be an approximately linear function of Qx. The linear function is defined by limiting values, so that when Qx is 1, kappa is predicted to be 0 bar, and at the other extreme, when Qx is 0, kappa is predicted to be in the range 500-1000 bar. This is called Relation B. Experiments with 32 leaves from 10 species are used to test the mechanical interpretation. The results showed that Relation A was a reasonable approximation for most of the tested leaves. The data for 10 species, were used to estimate Relation B, confirming that as Qx approached 1, kappa did approach 0 bar as predicted, and that as Qx approached 0, kappa approached approximately 750 bar, consistent with the a priori prediction of 500-1000 bar. The relations were also successfully tested using independent published data. An estimate of Qx is shown to be of considerable practical value in (a) converting Pb to water status and vice versa; (b) characterizing leaf morphology and composition; and (c) rationalizing quantitatively the functional classes of xerophytes, mesophytes and hygrophytes. The assumption of constant density inside the outer boundary of the non-gaseous material cannot be guaranteed, and when this is violated, our (or any other) interpretation of Pb is unreliable. Investigation of the conditions under which this assumption is invalid should be a high priority.  相似文献   

19.
The phases of simple systems involving one type of protein (lysozyme or cytochrome c) and one type of lipid (phosphatidic acid) have been characterized by X-ray crystallography, chemical analysis and spin-labeling technique as a function of temperature. They are of the lamellar type with alternative protein monolayers and lipid bilayers. According to the pH, two types of lamellar phases are obtained, one where the lipid-protein interactions are mainly hydrophobic, the other where they are electrostatic. In both cases, a phase transition occurs as temperature is lowered, between a high temperature phase, where all the lipids are in the liquid-like state, and another phase where some lipid chains are rigid. In the case of the phases with electrostatic interaction, it is shown that the onset of the order-disorder transition is shifted towards low temperature as compared with the homologous lipid-water phase and that the protein content of the phase decreases as the ratio of the liquid to rigid hydrocarbon chains decreases. This leads us to suggest that in the systems studied in this work the proteins interact only with lipid in the liquid-like state. In the case of the phases with hydrophobic interaction, it is shown that the extent of hydrophobic interaction between protein and lipid increases as the unsaturation of the hydrocarbon chains increases. The onset of the order-disorder transition shows a greater shift towards low temperature than the one observed in the case of the phase with electrostatic interaction.  相似文献   

20.
The effect of hydration on the conformation and dynamics of the phosphatidylcholine headgroup has been investigated by 2H-NMR measurements of liquid crystalline dioleoylphosphatidylcholine in multilamellar liposomes. Deuterium quadrupole splittings (delta nu Q) and spin-lattice relaxation rates (1/T1) were recorded for three selectively labeled headgroup segments (alpha, beta, and gamma) over the range of water/lipid mole ratios from 4 to 100. The smooth changes in delta nu Q and 1/T1 are found to essentially parallel each other and can be described by a single exponential decay function. Progressive hydration thus induces a concerted change in headgroup conformation together with an increase in its rate of motion (detected by delta nu Q and 1/T1, respectively). The enhanced mobility is partially due to a shift in the lipid phase transition temperature (as monitored by differential scanning calorimetry) and is furthermore attributed to an entropic contribution. It is concluded that the choline dipole becomes slightly raised in its average orientation into the aqueous layer and that the rate is increased at which the headgroup is fluctuating and protruding. The observed molecular changes can thus be accommodated within a model where the effective accessible headgroup volume expands with increasing hydration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号