首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jin Y  Lee H  Zeng SX  Dai MS  Lu H 《The EMBO journal》2003,22(23):6365-6377
The CDK inhibitor p21waf1/cip1 is degraded by a ubiquitin-independent proteolytic pathway. Here, we show that MDM2 mediates this degradation process. Overexpression of wild-type or ring finger-deleted, but not nuclear localization signal (NLS)-deleted, MDM2 decreased p21waf1/cip1 levels without ubiquitylating this protein and affecting its mRNA level in p53(-/-) cells. This decrease was reversed by the proteasome inhibitors MG132 and lactacystin, by p19(arf), and by small interfering RNA (siRNA) against MDM2. p21waf1/cip1 bound to MDM2 in vitro and in cells. The p21waf1/cip1-binding-defective mutant of MDM2 was unable to degrade p21waf1/cip1. MDM2 shortened the half-life of both exogenous and endogenous p21waf1/cip1 by 50% and led to the degradation of its lysine-free mutant. Consequently, MDM2 suppressed p21waf1/cip1-induced cell growth arrest of human p53(-/-) and p53(-/-)/Rb(-/-)cells. These results demonstrate that MDM2 directly inhibits p21waf1/cip1 function by reducing p21waf1/cip1 stability in a ubiquitin-independent fashion.  相似文献   

2.
3.
We have studied the ability of F9 teratocarcinoma cells to arrest in G1/S and G2/M checkpoints following gamma-irradiation. Wild-type p53 protein is rapidly accumulated in F9 cells after gamma-irradiation, however this is not followed by G1/S arrest; there is just a reversible delay of the cell cycle in G2/M. In order to elucidate the reasons of the lack of G1/S arrest in F9 cells we investigated the levels of regulatory cell cycle proteins: G1-cyclins, cyclin dependent kinases and kinase inhibitor p21WAF1/CIP1. We have shown that in spite of p53-dependent activation of p21WAF1/CIP1 promoter, p21WAF1/CIP1 protein is not revealed by different polyclonal and monoclonal antibodies, either by immunoblotting or by immunofluorescent staining. However, when cells are treated with specific proteasome inhibitor lactacystin, p21WAF1/CIP1 protein is revealed. We therefore suggest that p21WAF1/CIP1 protein is subjected to proteasome degradation in F9 cells and probably the lack of G1/S arrest after gamma-irradiation is due to this degradation. Thus, it is the combination of functionally active p53 with low level expression of p21WAF1/CIP1 that causes a short delay of the cell cycle progression in G2/M, rather than the G1-arrest after gamma-irradiation of F9 cells.  相似文献   

4.
Summary In chondrocytes, fibroblast growth factors (FGFs) inhibit chondrocytes proliferation by upregulation of the cell cycle inhibitor p21cip/waf. In this report, we first investigated the roles of fibronectin (FN)-mediated cell adhesion in the modulation of FGF-1's antiproliferative function in chondrocytes. In this study, we found that FN-mediated signaling could rescue cell cycle arrest induced by FGF-1 in primary human chondrocytes. This prevention of cell cycle arrest induced by FGF-1 was due to the suppression of the cell cycle inhibitor p21cip/waf expression on adhesion to FN and its downstream activation of signaling pathways. Finally, we showed that this rescue induced by FN-mediated adhesion is dependent on the extracellular regulated kinase (ERK) signaling pathway. Taken together, these studies support that, despite FGF-FGF receptor's growth-inhibitory function, the FN-mediated signaling can collaborate to compensate for its negative effect on chondrocytes proliferation, providing evidence for cross talk between signals emerging from these cell surface molecules in chondrocyte.  相似文献   

5.
Prasad S  Kaur J  Roy P  Kalra N  Shukla Y 《Life sciences》2007,81(17-18):1323-1331
Cancer of the prostate gland (PCA) is the most common invasive malignancy and is the second leading cause of cancer-related death in males. The polyphenolic constituents of black tea have gained considerable attention as chemopreventive agents. Many studies have shown that black tea reduces the risk of several cancer types. In the present study, we studied the effect of a black tea polyphenol, theaflavin (TF), on cellular proliferation and cell death in the human prostate cancer cell line, PC-3. We showed that TF inhibits cell proliferation in a dose- and time-dependent manner. Studies on cell cycle progression have shown that the anti-proliferative effect of TF is associated with an increase in the G2/M phase of PC-3 cells. Western blot results showed that TF-induced G2/M phase arrest was mediated through the inhibition of cyclin-regulated signaling pathways. TF induces cyclin kinase inhibitor p21(waf1/cip1) expression and inhibits cdc25C and cyclin B expression. Increased exposure time to TF caused apoptosis of PC-3 cells, which was associated with up-regulation of the pro-apoptotic proteins Bax, caspase-3 and caspase-9 and down-regulation of anti-apoptotic protein Bcl-2. The role of caspase-induced apoptosis was further confirmed by a reduction in mitochondria membrane potential and the appearance of a DNA laddering pattern. Thus, it can be concluded that TF acts as an effective anti-proliferative agent by modulating cell growth regulators in prostate cancer cells.  相似文献   

6.
We investigated the role of some key regulators of cell cycle in the activation of caspases during apoptosis of insulin-secreting cells after sustained depletion of GTP by a specific inosine 5'-monophosphate dehydrogenase inhibitor, mycophenolic acid (MPA). p21(Waf1/Cip1) was significantly increased following MPA treatment, an event closely correlated with the time course of caspase activation under the same conditions. MPA-induced p21(Waf1/Cip1) was not mediated by p53, since p53 mass was gradually reduced over time of MPA treatment. The increment of p21(Waf1/Cip1) by MPA was further enhanced in the presence of a pan-caspase inhibitor, indicating that the increased p21(Waf1/Cip1) may occur prior to caspase activation. This notion of association of p21(Waf1/Cip1) accumulation with caspase activation and apoptosis was substantiated by using mimosine, a selective p21(Waf1/Cip1) inducer independent of p53. Mimosine, like MPA, also increased p21(Waf1/Cip1), promoted apoptosis and simultaneously increased the activity of caspases. Furthermore, knocking down of p21(Waf1/Cip1) transfection of siRNA duplex inhibited caspase activation and apoptosis due to GTP depletion. In contrast to p21(Waf1/Cip1), a reduction in p27(Kip1) occurred in MPA-treated cells. These results indicate that p21(Waf1/Cip1) may act as an upstream signal to block mitogenesis and activate caspases which in turn contribute to induction of apoptosis.  相似文献   

7.
In normal human fibroblasts, beta-carotene induces a cell-cycle delay in the G1 phase independent of its provitamin A activity via a mechanism not yet elucidated. In this study we provide biochemical evidence showing that delayed progression through the G1 phase occurs concomitantly with: an increase in both nuclear-bound and total p21waf1/cip1 protein levels; an increase in the amount of p21waf1/cip1 associated with cdk4; the inhibition of cyclin D1-associated cdk4 kinase activity; and a reduction in the levels of hyperphosphorylated forms of retinoblastoma protein, and particularly, in phosphorylated Ser780. The role of p21waf1/cip1 in the antiproliferative effect of the carotenoid was further supported by genetic evidence that neither changes in cell-cycle progression nor in the phosphorylation status of retinoblastoma protein were observed in p21waf1/cip1-deficient human fibroblasts treated with beta-carotene. These results clearly demonstrate that p21waf1/cip1 is involved directly in the molecular pathway by which beta-carotene inhibits cell-cycle progression.  相似文献   

8.
The effect of synthetic isothiocyanate ethyl-4-isothiocyanatobutanoate (E-4IB) on survival of mismatch repair-proficient TK6 and -deficient MT1 cell lines as well as the influence of proteasomal inhibitor MG132, caspase inhibitor Z-VAD-fmk, and ATM inhibitor caffeine on E-4IB modulation of cell cycle and apoptosis was evaluated. Flow cytometric analyses of DNA double strand breaks (γ-H2AX), mitotic fraction (phospho-histone H3), cell cycle modulation, apoptosis induction (sub-G0 fraction and fluorescein diacetate staining), and dissipation of transmembrane mitochondrial potential (JC-1 staining) were performed. Western blotting was used for the evaluation of ERK activation, expression of p53, p21cip1/waf1 and GADD45α proteins, as well as PARP fragmentation. Analysis of mitotic nuclei was performed for chromosomal aberrations assessment. MT1 cells were more resistant to E-4IB treatment then TK6 cells (IC50 8 μM vs. 4 μM). In both cell lines E-4IB treatment induced phosphorylation of H2AX, increase of p53 protein level, phospho-histone H3 staining, and G2/M arrest. The sub-G0 fragmentation was accompanied by PARP degradation, decreased mitochondrial transmembrane potential, and diminished p21cip1/waf1 protein expression in TK6 cells. Caspase inhibitor Z-VAD-fmk decreased E-4IB induced sub-G0 fragmentation and extent of apoptosis in TK6 cells, while proteasome inhibitor MG132 increased number of apoptotic cells in both cell lines tested. A number of aberrant metaphases and clastogenic effect of high E-4IB concentration was observed. The synthetic isothiocyanate E-4IB induced DNA strand breaks, increased mitotic fraction and apoptosis potentiated by MG132 inhibitor in both mismatch repair-proficient and -deficient cell lines. This work was supported in part by Slovak Governmental Research and Development sub-program Food-quality and safety No. 2003SP270280E010280E01, National Program “Use of Cancer Genomics to Improve the Human Population Health”, project 2003 SP 510280800/0280801, European Commission project (QLG1-CT-2000-01230), and VEGA projects 2/4069 and 2/3161/23.  相似文献   

9.
The magnitude of gut adaptation is a decisive factor in determining whether patients are able to live independent of parenteral nutrition after massive small bowel loss. We previously established that the cyclin-dependent kinase inhibitor (CDKI) p21(waf1/cip1) is necessary for enterocyte proliferation and a normal adaptation response. In the present study, we have further elucidated the role of this CDKI in the context of p27(kip1), another member of the Cip/Kip CDKI family. Small bowel resections (SBRs) or sham operations were performed in control (C57/BL6), p21(waf1/cip1)-null, p27(kip1)-null, and p21(waf1/cip1)/p27(kip1) double-null mice. Morphological (villus height/crypt depth) alterations in the mucosa, the kinetics of enterocyte turnover (rates of enterocyte proliferation and apoptosis), and the protein expression of various cell cycle-regulatory proteins were recorded at various postoperative times. Enterocyte compartment-specific mRNA expression was investigated using laser capture microdissection. Resection-induced adaptation in control mice coincided with increased protein expression of p21(waf1/cip1) and decreased p27(kip1) within 3 days postoperatively. Identical changes in mRNA expression were detected in crypt but not in villus enterocytes. Adaptation occurred normally in control and p27(kip1)-null mice; however, mice deficient in both p21(waf1/cip1) and p27(kip1) failed to increase baseline rates of enterocyte proliferation and adaptation. The expression of p21(waf1/cip1) protein and mRNA in the proliferative crypt compartment is necessary for resection-induced enterocyte proliferation and adaptation. The finding that deficient expression of p27(kip1) does not affect adaptation suggests that these similar CDKI family members display distinctive cellular functions during the complex process of intestinal adaptation.  相似文献   

10.
11.
12.
Endothelial cells (EC) express constitutively two major isoforms (Nox2 and Nox4) of the catalytic subunit of NADPH oxidase, which is a major source of endothelial reactive oxygen species. However, the individual roles of these Noxes in endothelial function remain unclear. We have investigated the role of Nox2 in nutrient deprivation-induced cell cycle arrest and apoptosis. In proliferating human dermal microvascular EC, Nox2 mRNA expression was low relative to Nox4 (Nox2:Nox4 approximately 1:13), but was upregulated 24 h after starvation and increased to 8+/-3.5-fold at 36 h of starvation. Accompanying the upregulation of Nox2, there was a 2.28+/-0.18-fold increase in O2.- production, a dramatic induction of p21cip1 and p53, cell cycle arrest, and the onset of apoptosis (all p<0.05). All these changes were inhibited significantly by in vitro deletion of Nox2 expression and in coronary microvascular EC isolated from Nox2 knockout mice. In Nox2 knockout cells, although there was a 3.8+/-0.5-fold increase in Nox4 mRNA expression after 36 h of starvation (p<0.01), neither O2.- production nor the p21cip1 or p53 expression was increased significantly and only 0.46% of cells were apoptotic. In conclusion, Nox2-derived O2.-, through the modulation of p21cip1 and p53 expression, participates in endothelial cell cycle regulation and apoptosis.  相似文献   

13.

Introduction

Dendritic cells (DCs) possess the capacity to elicit immune responses against harmful antigens and have been used in DC-vaccines to stimulate the immune system to engage cancer cells. However, a lack of an appreciation of the quality of the DC that is used and/or the monocyte from which it is derived has limited their successful incorporation into treatment strategies.

Methods

In the current study, we explored the relationship between cytokine receptor expression on the monocytes and its subsequent development into DCs. The significance of p21 expression in DCs during differentiation was also studied, as was the effect that manipulating this with chemotherapy may have on DC quality.

Results

DCs separated into two groups based on their ability to respond to a maturation stimulus. This quality correlated with a particular receptor profile of granulocyte–macrophage colony-stimulating factor and interleukin 4 expressed on the monocytes from which they were derived. DC quality was also associated with p21 expression, and artificially increasing their levels in DCs by using some chemotherapy improved function.

Conclusions

Overall, these studies have highlighted a role for common chemotherapy in activating p21 in DCs, which is a prerequisite for good DC function.  相似文献   

14.
We addressed the analysis of the physical and functional association of proliferating cell nuclear antigen (PCNA), a protein involved in many DNA transactions, with poly(ADP-ribose) polymerase (PARP-1), an enzyme that plays a crucial role in DNA repair and interacts with many DNA replication/repair factors. We demonstrated that PARP-1 and PCNA co-immunoprecipitated both from the soluble and the DNA-bound fraction isolated from S-phase-synchronized HeLa cells. Immunoprecipitation experiments with purified proteins further confirmed a physical association between PARP-1 and PCNA. To investigate the effect of this association on PARP-1 activity, an assay based on the incorporation of radioactive NAD was performed. Conversely, the effect of PARP-1 on PCNA-dependent DNA synthesis was assessed by a DNA polymerase delta assay. A marked inhibition of both reactions was found. Unexpectedly, PARP-1 activity also decreased in the presence of p21waf1/cip1. By pull-down experiments, we provided the first evidence for an association between PARP-1 and p21, which involves the C-terminal part of p21 protein. This association was further demonstrated to occur also in vivo in MNNG (N-methyl-N'-nitro-N-nitrosoguanidine)-treated human fibroblasts. These observations suggest that PARP-1 and p21 could cooperate in regulating the functions of PCNA during DNA replication/repair.  相似文献   

15.
Although protein kinase C (PKC) has been widely implicated in the positive and negative control of proliferation, the underlying cell cycle mechanisms regulated by individual PKC isozymes are only partially understood. In this report, we show that PKCdelta mediates phorbol ester-induced G1 arrest in lung adenocarcinoma cells and establish an essential role for this novel PKC in controlling the expression of the cell cycle inhibitor p21. Activation of PKC with phorbol 12-myristate 13-acetate (PMA) in early G1 phase impaired progression of lung adenocarcinoma cells into S phase, an effect that was completely abolished by specific depletion of PKCdelta, but not PKCalpha. Although the PKC effect was unrelated to the inhibition of cyclin D1 expression, PKC activation significantly up-regulated p21 and down-regulated Rb hyperphosphorylation and cyclin A expression. Elevations in p21 mRNA and protein by PMA were mediated by PKCdelta but not PKCalpha. Studies using luciferase reporters also revealed an essential role for PKCdelta in the PMA-induced inhibition of Rb-dependent cyclin A promoter activity. Finally, we showed that the cell cycle inhibitory effect of PKCdelta is greatly attenuated by RNA interference-mediated knock-down of p21. Our results identify a novel link between PKCdelta and G1 arrest via p21 up-regulation and highlight the complexities in the downstream effectors of PKC isozymes in the context of cell cycle progression and proliferation.  相似文献   

16.
17.
18.
The sphingoplipid ceramide is responsible for a diverse range of biochemical and cellular responses including a putative role in modulating cell cycle progression. Herein, we describe that an accumulation of ceramide, achieved through the exogenous application of C(6)-ceramide or exposure to sphingomyelinase, induces a G(2) arrest in Rhabdomyosarcoma (RMS) cell lines. Utilizing the RMS cell line RD, we show that this G(2) arrest required the rapid induction of p21(Cip1/Waf1) independent of DNA damage. This was followed at later time points (48 h) by the commitment to apoptosis. Apoptosis was prevented by Bcl-2 overexpression, but permitted the maintenance of elevated p21(Cip1/Waf1) protein expression and the stabilization of the G(2) arrest response. Inhibition of p21(Cip1/Waf1) protein synthesis with cyclohexamide (CHX) or silencing of p21(Cip1/Waf1) with siRNA, prevented ceramide-mediated G(2) arrest and the late induction of apoptosis. Further, adopting the recent discovery that murine double minute 2 (MDM2) controls p21(Cip1/Waf1) expression by presenting this CDK inhibitor to the proteasome for degradation, RD cells overexpressing MDM2 abrogated ceramide-mediated p21(Cip1/Waf1) induction, G(2) arrest and the late ensuing apoptosis. Collectively, these data further support the notion that ceramide accumulation can modulate cell cycle progression. Additionally, these observations highlight MDM2 expression and proteasomal activity as key determinants of the cellular response to ceramide accumulation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号