首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multicomponent complex is involved in the splicing of messenger RNA precursors   总被引:134,自引:0,他引:134  
P J Grabowski  S R Seiler  P A Sharp 《Cell》1985,42(1):345-353
A multicomponent complex termed spliceosome (splicing body) is unique to the splicing of messenger RNA precursors in vitro. This 60S RNA-protein complex contains RNAs from the previously characterized bipartite splicing intermediate, the 5' exon RNA, and the lariat intervening sequence-3' exon RNA, as well as some intact 455 nucleotide precursor RNA. This complex contains snRNPs, particularly U1 RNP, as shown by immunoprecipitation with specific antisera. Formation of the 60S complex appears to be an early and essential step in splicing, because the 60S complex forms during the early stage, or lag time, of the reaction before the first covalent modification, cleavage at the 5' splice site of precursor RNA. The 60S complex forms only under conditions that permit splicing; both ATP and a precursor RNA containing authentic 5' and 3' splice sites are required for formation, while antiserum specific for U1 RNP inhibits its formation. RNA within the 60S complex, predominantly precursor RNA, was chased into products with accelerated kinetics and more complete conversion than purified precursor RNA.  相似文献   

2.
To investigate soluble factors involved in pre-messenger RNA splicing we have fractionated nuclear extract by simple centrifugation to produce a supernatant pellet pair. Factors larger than 15S including U2, U4, U5, and U6 snRNPs fractionate with the pellet; U1 snRNPs distribute equally in pellet and supernatant. Each fraction is individually incompetent for splicing and spliceosome assembly; mixing restores wild type activity and assembly. The pellet fraction directs an aberrant assembly pathway in which proper 3', but improper 5' splice site recognition occurs. Complexes formed with the pellet fraction are distinguishable from wild-type complexes using native gel electrophoresis. Pellet complexes contain U1 snRNP antigens and their formation requires ATP, U1 snRNPs, U2 snRNPs, and sequences at the 3' end of the intron - properties shared with the initial steps of normal assembly and directed by sequences at the 3' end of the intron. In contrast, pellet complex assembly shows no dependence on the presence of a 5' splice junction within precursor RNA. Furthermore, binding of factors to the 5' splice junction is deficient in pellet assemblies. Thus, the pellet lacks a factor required for proper recognition of 5' splice sites. This factor can be supplied by the supernatant. Complementation occurs when supernatant U1 RNA is destroyed, suggesting that the supernatant factor recognizing 5' splice sites is not U1 snRNPs.  相似文献   

3.
Interactions at the 3' end of the intron initiate spliceosome assembly and splice site selection in vertebrate pre-mRNAs. Multiple factors, including U1 small nuclear ribonucleoproteins (snRNPs), are involved in initial recognition at the 3' end of the intron. Experiments were designed to test the possibility that U1 snRNP interaction at the 3' end of the intron during early assembly functions to recognize and define the downstream exon and its resident 5' splice site. Splicing precursor RNAs constructed to have elongated second exons lacking 5' splice sites were deficient in spliceosome assembly and splicing activity in vitro. Similar substrates including a 5' splice site at the end of exon 2 assembled and spliced normally as long as the second exon was less than 300 nucleotides long. U2 snRNPs were required for protection of the 5' splice site terminating exon 2, suggesting direct communication during early assembly between factors binding the 3' and 5' splice sites bordering an exon. We suggest that exons are recognized and defined as units during early assembly by binding of factors to the 3' end of the intron, followed by a search for a downstream 5' splice site. In this view, only the presence of both a 3' and a 5' splice site in the correct orientation and within 300 nucleotides of one another will stable exon complexes be formed. Concerted recognition of exons may help explain the 300-nucleotide-length maximum of vertebrate internal exons, the mechanism whereby the splicing machinery ignores cryptic sites within introns, the mechanism whereby exon skipping is normally avoided, and the phenotypes of 5' splice site mutations that inhibit splicing of neighboring introns.  相似文献   

4.
Assembly of splicing precursor RNAs into ribonucleoprotein particle (RNP) complexes during incubation in in vitro splicing extracts was monitored by a new system of RNP gel electrophoresis. The temporal pattern of assembly observed by our system was identical to that obtained by other gel and gradient methodologies. In contrast to the results obtained by other systems, however, we observed requirements of U1 small nuclear RNPs (snRNPs) and 5' splice junction sequences for formation of specific complexes and retention of U1 snRNPs within gel-fractionated complexes. Single-intron substrate RNAs rapidly assembled into slow-migrating complexes. The first specific complex (A) appeared within a minute of incubation and required ATP, 5' and 3' precursor RNA consensus sequences, and intact U1 and U2 RNAs for formation. A second complex (B) containing precursor RNA appeared after 15 min of incubation. Lariat-exon 2 and exon 1 intermediates first appeared in this complex, operationally defining it as the active spliceosome. U4 RNA was required for appearance of complex B. Released lariat first appeared in a complex of intermediate mobility (A') and subsequently in rapidly migrating diffuse complexes. Ligated product RNA was observed only in fast-migrating complexes. U1 snRNPs were detected as components of gel-isolated complexes. Radiolabeled RNA within the A and B complexes was immunoprecipitated by U1-specific antibodies under gel-loading conditions and from gel-isolated complexes. Therefore, the RNP antigen remained associated with assembled complexes during gel electrophoresis. In addition, 5' splice junction sequences within gel-isolated A and B complexes were inaccessible to RNase H cleavage in the presence of a complementary oligonucleotide. Therefore, nuclear factors that bind 5' splice junctions also remained associated with 5' splice junctions under our gel conditions.  相似文献   

5.
6.
M M Konarska  P A Sharp 《Cell》1987,49(6):763-774
Electrophoretic separation of ribonucleoprotein particles in a nondenaturing gel was used to analyze the splicing of mRNA precursors. Early in the reaction, a complex formed consisting of the U2 small nuclear ribonucleoprotein particle (snRNP) bound to sequences upstream of the 3' splice site. This complex is modeled as a precursor of a larger complex, the spliceosome, which contains U2, U4/6, and U5 snRNPs. Conversion of the U2 snRNP-precursor RNA complex to the spliceosome probably involves binding of a single multi-snRNP particle containing U4/6 and U5 snRNPs. The excised intron was released in a complex containing U5, U6, and probably U2 snRNPs. Surprisingly, U4 snRNP was not part of the intron-containing complex, suggesting that U4/6 snRNP disassembles and assembles during splicing. Subsequently, the reassembled U4/6 snRNP would associate with U5 snRNP and participate in de novo spliceosome formation. U1 snRNP was not detected in any of the splicing complexes.  相似文献   

7.
Precise 5' splice-site recognition is essential for both constitutive and regulated pre-mRNA splicing. The U1 small nuclear ribonucleoprotein particle (snRNP)-specific protein U1C is involved in this first step of spliceosome assembly and important for stabilizing early splicing complexes. We used an embryonically lethal U1C mutant zebrafish, hi1371, to investigate the potential genomewide role of U1C for splicing regulation. U1C mutant embryos contain overall stable, but U1C-deficient U1 snRNPs. Surprisingly, genomewide RNA-Seq analysis of mutant versus wild-type embryos revealed a large set of specific target genes that changed their alternative splicing patterns in the absence of U1C. Injection of ZfU1C cRNA into mutant embryos and in vivo splicing experiments in HeLa cells after siRNA-mediated U1C knockdown confirmed the U1C dependency and specificity, as well as the functional conservation of the effects observed. In addition, sequence motif analysis of the U1C-dependent 5' splice sites uncovered an association with downstream intronic U-rich elements. In sum, our findings provide evidence for a new role of a general snRNP protein, U1C, as a mediator of alternative splicing regulation.  相似文献   

8.
Several lines of evidences indicate that U1 and U2 snRNPs become interacting during pre-mRNA splicing. Here we present data showing that an U1-U2 snRNPs interaction can be mediated by an RNA only containing the consensus 5' splice site of all of the sequences characteristic of pre-mRNAs. Using monospecific antibodies (anti-(U1) RNP and anti-(U2) RNP), we have found that a tripartite complex comprising U1 and U2 snRNPs is immunoprecipitated in the presence of a consensus 5' splice site containing RNA, either from a crude extract or from an artificial mixture enriched in U1 and U2 snRNPs. This complex does not appear in the presence of an RNA lacking the sequence complementary to the 5' terminus of U1 snRNA. Moreover, RNAse T1 protection coupled to immunoprecipitation experiments have demonstrated that only the 5' end sequence of U1 snRNA contacts the consensus 5' splice site containing RNA, arguing that U2 snRNP binding in the tripartite complex is mediated by U1 snRNP.  相似文献   

9.
We have developed an in vitro complementation assay to analyse the functions of U6 small nuclear RNA (snRNA) in splicing and in the assembly of small nuclear ribonucleoproteins (snRNPs) and spliceosomes. U6-specific, biotinylated 2'-OMe RNA oligonucleotides were used to deplete nuclear extract of the U4/U6 snRNP and to affinity purify functional U4 snRNP. The addition of affinity purified U4 snRNP together with U6 RNA efficiently restored splicing activity, spliceosome assembly and U4/U5/U6 multi-snRNP formation in the U4/U6-depleted extract. Through a mutational analysis we have obtained evidence for multiple sequence elements of U6 RNA functioning during U4/U5/U6 multi-snRNP formation, spliceosome assembly and splicing. Surprisingly, the entire 5' terminal domain of U6 RNA is dispensable for splicing function. In contrast, two regions in the central and 3' terminal domain are required for the assembly of a functional U4/U5/U6 multi-snRNP. Another sequence in the 3' terminal domain plays an essential role in spliceosome assembly; a model is strongly supported whereby base pairing between this sequence and U2 RNA plays an important role during assembly of a functional spliceosome.  相似文献   

10.
11.
HeLa cell nuclear splicing extracts have been prepared that are specifically and efficiently depleted of U1, U2, or U4/U6 snRNPs by antisense affinity chromatography using biotinylated 2'-OMe RNA oligonucleotides. Removal of each snRNP particle prevents pre-mRNA splicing but arrests spliceosome formation at different stages of assembly. Mixing extracts depleted for different snRNP particles restores formation of functional splicing complexes. Specific binding of factors to the 3' splice site region is still detected in snRNP-depleted extracts. Depletion of U1 snRNP impairs stable binding of U2 snRNP to the pre-mRNA branch site. This role of U1 snRNP in promoting stable preslicing complex formation is independent of the U1 snRNA-5' splice site interaction.  相似文献   

12.
S M Berget  B L Robberson 《Cell》1986,46(5):691-696
The requirement for individual U RNAs in splicing and polyadenylation was investigated using oligonucleotide-directed cleavage of snRNAs in in vitro processing extracts. Cleavage of U1, U2, or U4 RNA inhibited splicing but not polyadenylation of short precursor RNAs. Thus each snRNA and the snRNP in which it is assembled participates in the splicing reaction. Splicing activity was recovered when extracts containing cleaved U RNAs were mixed in pairwise combinations, indicating that U1, U2, and U4/U6 snRNPs independently interact with the assembling spliceosome. The involvement of multiple snRNPs in the splicing of simple precursor RNAs suggests that the spliceosome is a large complex assembly consisting of multiple snRNPs whose activity is dependent on the structural integrity of the individual U RNAs.  相似文献   

13.
Who's on first? The U1 snRNP-5' splice site interaction and splicing   总被引:25,自引:0,他引:25  
U1 small nuclear ribonucleoprotein (snRNP) is important for pre-mRNA splicing both in yeast (Saccharomyces cerevisiae) and mammalian systems. The RNA component of U1 snRNP, U1 snRNA, interacts by base pairing with pre-mRNA 5' splice sites. This article examines recent evidence suggesting that U1 snRNP is important for an early step in spliceosome assembly rather than a late step that contributes to the specificity of 5' splice-site cleavage.  相似文献   

14.
15.
16.
Human immunodeficiency virus type 1 (HIV-1) exonic splicing silencers (ESSs) inhibit production of certain spliced viral RNAs by repressing alternative splicing of the viral precursor RNA. Several HIV-1 ESSs interfere with spliceosome assembly by binding cellular hnRNP A/B proteins. Here, we have further characterized the mechanism of splicing repression using a representative HIV-1 hnRNP A/B-dependent ESS, ESSV, which regulates splicing at the vpr 3' splice site. We show that hnRNP A/B proteins bound to ESSV are necessary to inhibit E complex assembly by competing with the binding of U2AF65 to the polypyrimidine tracts of repressed 3' splice sites. We further show evidence suggesting that U1 snRNP binds the 5' splice site despite an almost complete block of splicing by ESSV. Possible splicing-independent functions of U1 snRNP-5' splice site interactions during virus replication are discussed.  相似文献   

17.
18.
Early recognition of pre-mRNA during spliceosome assembly in mammals proceeds through the association of U1 small nuclear ribonucleoprotein particle (snRNP) with the 5' splice site as well as the interactions of the branch binding protein SF1 with the branch region and the U2 snRNP auxiliary factor U2AF with the polypyrimidine tract and 3' splice site. These factors, along with members of the SR protein family, direct the ATP-independent formation of the early (E) complex that commits the pre-mRNA to splicing. We report here the observation in U2AF-depleted HeLa nuclear extract of a distinct, ATP-independent complex designated E' which can be chased into E complex and itself commits a pre-mRNA to the splicing pathway. The E' complex is characterized by a U1 snRNA-5' splice site base pairing, which follows the actual commitment step, an interaction of SF1 with the branch region, and a close association of the 5' splice site with the branch region. These results demonstrate that both commitment to splicing and the early proximity of conserved sequences within pre-mRNA substrates can occur in a minimal complex lacking U2AF, which may function as a precursor to E complex in spliceosome assembly.  相似文献   

19.
We have studied the assembly, composition and structure of splicing complexes using biotin-avidin affinity chromatography and RNase protection assays. We find that U1, U2, U4, U5 and U6 snRNPs associate with the pre-mRNA and are in the mature, functional complex. Association of U1 snRNP with the pre-mRNA is rapid and ATP independent; binding of all other snRNPs occurs subsequently and is ATP dependent. Efficient binding of U1 and U2 snRNPs requires a 5' splice site or a 3' splice site/branch point region, respectively. Both sequence elements are required for efficient U4, U5 and U6 snRNP binding. Mutant RNA substrates containing only a 5' splice site or a 3' splice site/branch point region are assembled into 'partial' splicing complexes, which contain a subset of these five snRNPs. RNase protection experiments indicate that in contrast to U1 and U2 snRNPs, U4, U5 and U6 snRNPs do not contact the pre-mRNA. Based upon the time course of snRNP binding and the composition of sucrose gradient fractionated splicing complexes we suggest an assembly pathway proceeding from a 20S (U1 snRNP only) through a 40S (U1 and U2 snRNPs) to the functional 60S splicing complex (U1, U2, U4, U5 and U6 snRNPs).  相似文献   

20.
B Sraphin  L Kretzner    M Rosbash 《The EMBO journal》1988,7(8):2533-2538
We analyzed the effects of suppressor mutations in the U1 snRNA (SNR19) gene from Saccharomyces cerevisiae on the splicing of mutant pre-mRNA substrates. The results indicate that pairing between U1 snRNA and the highly conserved position 5 (GTATGT) of the intron occurs early in spliceosome assembly in vitro. This pairing is important for efficient splicing both in vitro and in vivo. However, pairing at position 5 does not appear to influence 5' splice site selection in vivo, indicating that the previously described U1 snRNA:5' splice junction base pairing interaction is not sufficient to define the 5' cleavage site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号