首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seedlings of Lycopersicon esculentum Mill. var. Amalia were grown in a growth chamber under a photoperiod of 16 h light at 25 degrees C and 8 h dark at 20 degrees C. Five different treatments were applied to 30-day-old plants: Control treatment (plants maintained in the normal growth conditions throughout the experimental time), heat acclimation (plants exposed to 35 degrees C for 4 h in dark for 3 days), dark treatment (plants exposed to 25 degrees C for 4 h in dark for 3 days), heat acclimation plus heat shock (plants that previously received the heat acclimation treatment were exposed to 45 degrees C air temperature for 3 h in the light) and dark treatment plus heat shock (plants that previously received the dark treatment were exposed to 45 degrees C air temperature for 3 h in the light). Only the heat acclimation treatment increased the thermotolerance of the photosynthesis apparatus when the heat shock (45 degrees C) was imposed. In these plants, the CO(2) assimilation rate was not affected by heat shock and there was a slight and non-significant reduction in maximum carboxylation velocity of Rubisco (V(cmax)) and maximum electron transport rate contributing to Rubisco regeneration (J(max)). However, the plants exposed to dark treatment plus heat shock showed a significant reduction in the CO(2) assimilation rate and also in the values of V(cmax) and J(max). Chlorophyll fluorescence measurements showed increased thermotolerance in heat-acclimated plants. The values of maximum chlorophyll fluorescence (F(m)) were not modified by heat shock in these plants, while in the dark-treated plants that received the heat shock, the F(m) values were reduced, which provoked a significant reduction in the efficiency of photosystem II. A slight rise in the total superoxide dismutase (SOD) activity was found in the plants that had been subjected to both heat acclimation and heat shock, and this SOD activity was significantly higher than that found in the plants subjected to dark treatment plus heat shock. The activity of Fe-SOD isoenzymes was most enhanced in heat-acclimated plants but was unaltered in the plants that received the dark treatment. Total CuZn-SOD activity was reduced in all treatments. Darkness had an inhibitory effect on the Mn-SOD isoenzyme activity, which was compensated by the effect of a rise in air temperature to 35 degrees C. These results show that the heat tolerance of tomatoplants may be increased by the previous imposition of a moderately high temperature and could be related with the thermal stability in the photochemical reactions and a readjustment of V(cmax) and J(max). Some isoenzymes, such as the Fe-SODs, may also play a role in the development of heat-shock tolerance through heat acclimation. In fact, the pattern found for these isoenzymes in heat-acclimated Amalia plants was similar to that previously described in other heat-tolerant tomato genotypes.  相似文献   

2.
The protective effects of the cytokinin 6-benzylaminopurine and the compounds thidiazuron and kartolin, displaying a cytokinin activity, on the photosynthetic apparatus of young seedlings and leaves of adult plants of two wheat (Triticum aestivum L.) cultivars, Mironovskaya 808 (more drought tolerant) and Lutescens 758 (less tolerant to water stress), were compared on the background of an increasing water deficiency. At the stages of drought and subsequent rehydration, kartolin preparations were the most efficient protectors, enhancing a less pronounced decrease in the intensity of photosynthesis, carboxylating activity of the key enzyme of carbon metabolism—ribulose bisphosphate carboxylase/oxygenase (EC 4.1.1.39)—and the activity of NADP—glyceraldehyde phosphate dehydrogenase—the enzyme complex comprising phosphoglycerate kinase (EC 2.7.2.3.) and glyceraldehyde phosphate dehydrogenase (EC 1.2.1.13). This effect also included an increase in the leaf specific density and plant productivity. The negative influence of water stress on the photosynthetic apparatus was more pronounced in a less tolerant cultivar Lutescens 758 and in the seedlings as compared with the adult plants.  相似文献   

3.
The protective effects of the cytokinin 6-benzylaminopurine and the compounds thidiazuron and kartolin, displaying a cytokinin activity, on the photosynthetic apparatus of young seedlings and leaves of adult plants of two wheat (Triticum aestivum L.) cultivars, Mironovskaya 808 (more drought tolerant) and Lutescens 758 (less tolerant to water stress), were compared on the background of an increasing water deficiency. At the stages of drought and subsequent rehydration, cartolin preparations were the most efficient protectors, enhancing a less pronounced decrease in the intensity of photosynthesis, carboxylating activity of the key enzyme of carbon metabolism--ribulose bisphosphate carboxylase/oxygenase (EC 4.1.1.39)-and the activity of NADP-glyceraldehyde phosphate dehydrogenase--the enzyme complex comprising phosphoglycerate kinase (EC 2.7.2.3) and glyceraldehyde phosphate dehydrogenase (EC 1.2.1.13). This effect also included an increase in the leaf specific density and plant productivity. The negative influence of water stress on the photosynthetic apparatus was more pronounced in a less tolerant cultivar Lutescens 758 and in the seedlings as compared with the adult plants.  相似文献   

4.
Changes in tocopherol, chlorophyll and TBARS levels and the activities of antioxidant enzymes i.e., GSH-Px, GST, and SOD in chloroplasts of tomato plants subjected to moderate (50 mM) and severe (150 mM) NaCl stress were determined. Increase in tocopherol content around the second day under both stresses did not correlate with the chlorophyll degradation while such correlation was observed from the fifth day of severe stress. The activities of GSH-Px and GST as well as TBARS content showed NaCl-induced enhancement which was dose- and time-dependent. However, chloroplastic SOD was rather not involved in the response of tomato plants to NaCl stress. The obtained results suggest that under the moderate stress similarly as in the early phase of severe stress tocopherol functions as a typical antioxidant, while in the late phase of the latter it may be involved in senescence signaling pathway and enables the recovery and recycling of the compounds significant for a plant organism.  相似文献   

5.
Spectral and kinetic parameters and quantum yield of IR phosphorescence accompanying radiative deactivation of the chlorophyll a (Chl a) triplet state were compared in pigment solutions, greening and mature plant leaves, isolated chloroplasts, and thalluses of macrophytic marine algae. On the early stages of greening just after the Shibata shift, phosphorescence is determined by the bulk Chl a molecules. According to phosphorescence measurement, the quantum yield of triplet state formation is not less than 25%. Further greening leads to a strong decrease in the phosphorescence yield. In mature leaves developing under normal irradiation conditions, the phosphorescence yield declined 1000-fold. This parameter is stable in leaves of different plant species. Three spectral forms of phosphorescence-emitting chlorophyll were revealed in the mature photosynthetic apparatus with the main emission maxima at 955, 975, and 995 nm and lifetimes ~1.9, ~1.5, and 1.1–1.3 ms. In the excitation spectra of chlorophyll phosphorescence measured in thalluses of macrophytic green and red algae, the absorption bands of Chl a and accessory pigments — carotenoids, Chl b, and phycobilins — were observed. These data suggest that phosphorescence is emitted by triplet chlorophyll molecules that are not quenched by carotenoids and correspond to short wavelength forms of Chl a coupled to the normal light harvesting pigment complex. The concentration of the phosphorescence-emitting chlorophyll molecules in chloroplasts and the contribution of these molecules to chlorophyll fluorescence were estimated. Spectral and kinetic parameters of the phosphorescence corresponding to the long wavelength fluorescence band at 737 nm were evaluated. The data indicate that phosphorescence provides unique information on the photophysics of pigment molecules, molecular organization of the photosynthetic apparatus, and mechanisms and efficiency of photodynamic stress in plants.  相似文献   

6.
Development of fusarium wilt was studied in 4-to 6-month-old tomato plants (Lycopersicon esculentum L., cv. Kunera). It was shown that the development of this disease could follow two patterns. When the wilt developed slowly (type I disease), the mycelium of Fusarium oxysporum fungus partly blocked the xylem and grew extensively within parenchyma. When the wilt developed fast (type II syndrome), the occlusion of both xylem and phloem was observed; the xylem sap circulation was suppressed and, consequently, tomato plant tissues were dehydrated. The development of type I and type II diseases led to suppression of photosynthetic activity in plants. In the case of slow wilt (type I), both light and dark stages of photosynthesis were damaged. This was evident from the decrease in the effectiveness of light harvesting and charge separations in the reaction centers of photosystem II (PSII), suppression of electron transport at the acceptor side of PSII, and the decrease in activity of Rubisco. In the case of fast wilt (type II), the Rubisco activity did not change, and photochemical activity of chloroplasts was suppressed to a smaller degree than during type I fusarium wilt. The decrease in the rate of linear electron transport in tomato leaves was mostly due to inhibition of electron flow at the acceptor side of PSII. The data obtained suggest that photosynthetic activity in tomato plants is suppressed by different mechanisms depending on the developmental pattern of fusarium wilt.  相似文献   

7.
The proteome of the photosynthetic apparatus of barley (Hordeum vulgare), obtained by analysis of thylakoids without any previous fractionation, was mapped by native electrophoresis followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as the second dimension two-dimensional-blue native (2-D/BN)/SDS-PAGE). This protocol provided an excellent alternative to the 2-D-isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis for 2-D separation of the most hydrophobic thylakoid proteins. Monocots and dicots showed significant differences in the first dimension while in the second dimension patterns appeared similar. Identification of each spot was performed by internal peptide primary sequence determination using both nano-electrospray ionization tandem mass spectrometry and, to a lesser extent, peptide mass fingerprinting matrix-assisted laser desorption/ionization-time of flight using MALDI-TOF. This is due in particular to the fact that a limited number of peptides was obtained after trypsin digestion of these highly hydrophobic proteins. A larger number of peptides from hydrophilic intermembrane domains of transmembrane proteins were detected. Despite this, about 70% of the expected proteins were identified, including proteins with grand average of hydropathicity scores higher than 0.5. It is therefore reasonable to assert that protein hydrophobicity is not the limiting factor. Small proteins were not well identified with trypsin digestion. Instead some of these could be identified using acid hydrolysis. The method presented here does not require prefractionation of different thylakoid complexes and consequently gives confidence in comparing the proteome of the photosynthetic apparatus before and after treatment. It thus allows us to understand the molecular mechanisms underlying physiological adaptations of higher plants and to perform screening of photosynthetic mutants.  相似文献   

8.
Tomato plants were treated for two weeks with different concentrations of Cr(III) or Cr(VI) compounds to compare their toxic effects. The concentration of total Cr in plant tissues increased linearly with its concentration in the growth medium and Cr accumulated largely in the roots, regardless of the form in which it was supplied to the plant. All measured plant growth parameters were negatively affected by Cr, but Cr(VI) showed much more pronounced toxic effects. Leaf net photosynthetic rate (PN) was decreased by both Cr forms, and the decrease was also greater for Cr(VI). Cr(III) caused no significant effect on leaf stomatal conductance, whereas Cr(VI) reduced it. Cr(VI) also markedly reduced the variable to maximum chlorophyll a fluorescence ratio, measured in dark-adapted leaves.  相似文献   

9.
Tetranychus urticae is an important pest of citrus, especially lemon and mandarin, under Mediterranean climate. Factors leading to this problem are poorly understood, but saline stress is suspected to contribute to spider mite outbreaks. In this study, the effect of NaCl concentration in nutritive solutions used to water potted young mandarin trees on population growth of T. urticae reared on leaf discs obtained from these plants was investigated. Although the differences observed between treated (5, 10, 30 and 60 mM NaCl) and control groups were in most cases not significant, when all biological parameters calculated were combined to obtain Ro, T and r(m), remarkable differences appeared, and a concentration-dependent effect was detected. Although high salt concentrations negatively affected T. urticae, at the lowest concentration tested the r(m) value was significantly higher than at the water control and this may contribute to the observed field explosions of T. urticae.  相似文献   

10.
Cytokinin is known to be involved in many processes related to plastid development and function but the exact role of cytokinin in photosynthesis remains elusive. To investigate more profoundly the effects of cytokinin in this process, the photosynthetic activity of transgenic Pssuipt and 35S:CKX1 tobacco (Nicotiana tabacum) plants with respectively elevated and reduced endogenous cytokinin content was evaluated. Pigment analysis indicated that elevated endogenous cytokinin content resulted in increased pigment content. Functional analysis of the photosynthetic apparatus by chlorophyll a fluorescence and in vitro electron transport measurements clearly showed that changing the endogenous cytokinin content affects the activity of the photosynthetic apparatus. Surprisingly, both an increase as well as a decrease in cytokinin content results in a better photosynthetic performance. Quenching analysis revealed that the initial responses of the photosynthetic apparatus on a dark-light transition are not affected by changed cytokinin content. However, it has an effect on the further kinetic behavior. Taken together, we suggest that cytokinins can induce structural changes in the different parts of the electron transport chain as also demonstrated by the in vitro electron transport measurements.  相似文献   

11.
12.
Proteinaceous aspartic proteinase inhibitors are rare in nature and are described in only a few plant species. One of them corresponds to a family of cathepsin D inhibitors (CDIs) described in potato (Solanum tuberosum), involving up to 15 isoforms with a high sequence similarity. In this work, we describe a tomato (Solanum lycopersicum) wound-inducible protein called jasmonic-induced protein 21 (JIP21). Sequence analysis of its cDNA predicted a putative function as a CDI. The JIP21 gene, whose protein has been demonstrated to be glycosylated, is constitutively expressed in flowers, stem, and fruit, and is inducible to high levels by wounding and methyl jasmonate in leaves of tomato plants. The genomic sequence of JIP21 shows that the gene is intronless and reveals the presence of both a methyl jasmonate box (TGACT) and a G-box (CACGT) in the promoter. In contrast to the presumed role of JIP21 based on sequence analysis, a detailed biochemical characterization of the purified protein uncovers a different function as a strong chymotrypsin inhibitor, which questions the previously predicted inhibitory activity against aspartic proteinases. Moreover, Egyptian cotton worm (Spodoptera littoralis) larvae fed on transgenic tomato plants overexpressing JIP21 present an increase in mortality and a delay in growth when compared with larvae fed on wild-type plants. These larvae belong to the Lepidoptera family whose main digestive enzymes have been described as being Ser proteases. All these results support the notion that tomato JIP21 should be considered as a chymotrypsin inhibitor belonging to the Ser proteinase inhibitors rather than a CDI. Therefore, we propose to name this protein tomato chymotrypsin inhibitor 21 (TCI21).  相似文献   

13.
Retraction: The following article from Proteomics, “A proteomic approach for investigation of photosynthetic apparatus in plants” by C. Ciambella, P. Roepstorff, E.M. Aro and L. Zolla, published online on 28 January 2005 in the Wiley Online Library ( http://onlinelibrary.wiley.com/doi/10.1002/pmic.200401129/full ), has been retracted by agreement between the authors, the Editor‐in‐Chief and Wiley‐VCH GmbH & Co. KGaA. The retraction has been agreed due to the similarity of Figure 4 in this article and an image from an article by B. Granvogl and L.A. Eichacker which was originally submitted to Proteomics on November 1st, 2002 and which was finally published online on 6 June 2006 in the Wiley Online Library ( http://onlinelibrary.wiley.com/doi/10.1002/pmic.200500924/full ) as Figure 1 in Proteomics, “Mapping the proteome of thylakoid membranes by de novo sequencing of intermembrane peptide domains” by B. Granvogl, V. Reisinger and L.A. Eichacker.  相似文献   

14.
Scald reduces the photosynthetic area, causing yield losses in rice. Changes in gas exchange parameters caused by the pathogen begin before the onset of symptoms. Chemical methods are most commonly applied to control this disease; further research into biological control methods is required. Since Trichoderma asperellum induces plant pathogen defences, increases growth, and improves photosynthetic capability, this study investigated the efficacy of T. asperellum (Ufra T06, UfraT09, Ufra T12, and Ufra T52 (Ta)) in reducing the scald lesion size and the area under the disease progress curve and in minimising the negative effects of scald on gas exchange, chlorophyll a fluorescence, chlorophyll content, and oxidative stress enzyme activity. The experiment was a completely randomised design with five replications and two treatments. Scald was reduced by 62% in plants treated with T. asperellum compared with that in control. There was a 62% increase in the net CO2 assimilation rate (A) and a drop of 78% in the transpiration rate (E) in plants treated with T. asperellum. The maximum fluorescence (Fm) was 128% higher, and ascorbate peroxidase activity was also higher in plants treated with T. asperellum than in the control. This shows that the use of T. asperellum may be effective in improving the sustainability of the integrated management of rice diseases.  相似文献   

15.
The microstructure of leaves and ultrastructure of chloroplasts were examined in tomato (Lycopersicon esculentum L.) plants treated with elevated temperature. Plants were exposed to 35°C for 30 d after florescence. The plants grown continuously under 25°C served as controls. Compared with the controls, the net photosynthetic rate (P N) in stressed plants decreased significantly. Stomatal conductance, intercellular CO2 concentrations, the rate of transpiration, and the limitation of stomatal conductance showed that the decrease in P N was caused mainly by nonstomatal restrictions. Meanwhile, stomata density increased significantly in the stressed plants. The stomata status of opening and closing became disorganized with a prolonged 35°C exposure. The damage of chloroplast membrane occurred earlier and was more serious in the plants under elevated temperature. At the same time, the thylakoids were loosely distributed with lesser grana, but the number of lipid droplets increased in chloroplasts. The number of starch grains in chloroplasts increased first and then decreased. In addition, the length of the main nerve in leaves increased and the main vein showed distortion in the plants stressed by 35°C. An increase was observed in the number of cells on the abaxial side of the main vein and these cells were overly congregated. The thickness of a vertical section became thinner in the stressed leaves. The cells of the upper epidermis thinned, and the ratio of palisade tissue to spongy tissue decreased. Generally, the photosynthetic apparatus of tomato changed significantly and the changed chloroplast ultrastructure might be one of the important reasons that caused the decrease of P N under 35°C.  相似文献   

16.
The process of oxygenic photosynthesis enabled and still sustains aerobic life on Earth. The most elaborate form of the apparatus that carries out the primary steps of this vital process is the one present in higher plants. Here, we review the overall composition and supramolecular organization of this apparatus, as well as the complex architecture of the lamellar system within which it is harbored. Along the way, we refer to the genetic, biochemical, spectroscopic and, in particular, microscopic studies that have been employed to elucidate the structure and working of this remarkable molecular energy conversion device. As an example of the highly dynamic nature of the apparatus, we discuss the molecular and structural events that enable it to maintain high photosynthetic yields under fluctuating light conditions. We conclude the review with a summary of the hypotheses made over the years about the driving forces that underlie the partition of the lamellar system of higher plants and certain green algae into appressed and non-appressed membrane domains and the segregation of the photosynthetic protein complexes within these domains.  相似文献   

17.
Ligation of pigments to proteins of the thylakoid membrane is a central step in the assembly of the photosynthetic apparatus in higher plants. Because of the potentially damaging photooxidative activity of chlorophylls, it is likely that between their biosynthesis and final assembly, chlorophylls will always be bound to protein complexes in which photooxidation is prevented by quenchers such as carotenoids. Such complexes may include chlorophyll carriers and/or membrane receptors involved in protein insertion into the membrane. Many if not all pigment-protein complexes of the thylakoid are stabilised towards protease attack by bound pigments. The major light-harvesting chlorophyll a/b protein (Lhebl,2) folds into its native structure in vitro only when it binds pigments. Pigment-induced folding may also be a general feature of chlorophyll-carotenoid proteins of the photosynthetic apparatus.  相似文献   

18.
Poly(A) polymerases are centrally involved in the process of mRNA 3' end formation in eukaryotes. In animals and yeast, this enzyme works as part of a large multimeric complex to add polyadenylate tracts to the 3' ends of precursor RNAs in the nucleus. Plant nuclear enzymes remain largely uncharacterized. In this report, we describe an initial analysis of plant nuclear poly(A) polymerases (nPAPs). An enzyme purified from pea nuclear extracts possesses many features that are seen with the enzymes from yeast and mammals. However, the pea enzyme possesses the ability to polyadenylate RNAs that are associated with polynucleotide phosphorylase (PNP), a chloroplast-localized enzyme involved in RNA turnover. Similar behavior is not seen with the yeast poly(A) polymerase (PAP). A fusion protein consisting of glutathione-S-transferase and the active domain of an Arabidopsis-encoded nuclear poly(A) polymerase was also able to utilize PNP, indicating that the activity of the pea enzyme was due to an interaction between the pea nPAP and PNP, and not to other factors that might copurify with the pea enzyme. These results suggest the existence, in plant nuclei, of factors related to PNP, and an interaction between such factors and poly(A) polymerases.  相似文献   

19.
20.
Effects of the cytokinins 6-benzylaminopurine (BAP) and N-2-chloro-4-pyridyl-N′-phenylurea (4-PU-30) on the photochemical activity, oxygen flash yields, and thermoluminescence in bean plants under a water stress were studied. The cytokinins increased the photochemical (Hill reaction) activity and thermoluminescence "B"-band in control as well as in stressed and rehydrated plants, while the oxygen flash yields were affected only in the stressed and rehydrated plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号