首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, the green approach of nanoparticle synthesis by biological entities has been gaining great interest over various other physico-chemical methods, which are laden with many disadvantages. The important challenging issues in current nanotechnology include the development of reliable experimental techniques for the synthesis of nanoparticles of different compositions and sizes along with high monodispersity. Biological systems offer unique promising features to tailor nanomaterials with predefined properties. Fungi are the favorite choice of microorganisms due to the wide variety of advantages they offer over bacteria, yeast, actinomycetes, plants, and other physico-chemical techniques. The use of microorganisms for the deliberate synthesis of nanoparticles is a fairly new and exciting area of research with considerable potential for further development. This review describes an overview of the current green approaches for the synthesis of nanoparticles with particular emphasis on fungi, which are gaining worldwide popularity as nano-factories for the green synthesis of nanoparticles.  相似文献   

2.
Actinomycetes‐mediated biogenic synthesis of metal nanoparticles and their antimicrobial activities are well documented. Actinomycetes facilitate both intracellular and extracellular metal nanoparticles synthesis and are efficient candidates for the production of polydispersed, stable and ultra‐small size metal nanoparticles. Secondary metabolites and new chemical entities derived from Actinomycetes have not been extensively studied for the synthesis of metal/metal oxide nanoparticles. The present review focuses on biogenic synthesis of metal nanoparticles from Actinomycetes and the scope for exploring Actinomycetes‐derived compounds (enzymes, organics acids and bioactive compounds) as metal and metal oxide reducing agents for the synthesis of desired nanoparticles. This review also focuses on challenges faced in the applications of nanoparticles and the methods to synthesize biogenic metal nanoparticles with desired physiochemical properties such as ultra‐small size, large surface to mass ratio, high reactivity etc. Methods to evade their toxicity and unique interactions with biological systems to improve their chance as an alternative therapeutic agent in medical and pharmaceutical industry are also discussed.  相似文献   

3.
Mycoendophytes are the fungi that occur inside the plant tissues without exerting any negative impact on the host plant. They are most frequently isolated endophytes from the leaf, stem, and root tissues of various plants. Among all fungi, the mycoendophytes as biosynthesizer of noble metal nanoparticles (NPs) are less known. However, some reports showing efficient synthesis of metal nanoparticles, mainly silver nanoparticles and its remarkable antimicrobial activity against bacterial and fungal pathogens of humans and plants. The nanoparticles synthesized from mycoendophytes present stability, polydispersity, and biocompatibility. These are non-toxic to humans and environment, can be gained in an easy and cost-effective manner, have wide applicability and could be explored as promising candidates for a variety of biomedical, pharmaceutical, and agricultural applications. Mycogenic silver nanoparticles have also demonstrated cytotoxic activity against cancer cell lines and may prove to be a promising anticancer agent. The present review focuses on the biological synthesis of metal nanoparticles from mycoendophytes and their application in medicine. In addition, different mechanisms of biosynthesis and activity of nanoparticles on microbial cells, as well as toxicity of these mycogenic metal nanoparticles, have also been discussed.  相似文献   

4.
Using natural processes as inspiration, the present study demonstrates a positive correlation between zinc metal tolerance ability of a soil fungus and its potential for the synthesis of zinc oxide (ZnO) nanoparticles. A total of 19 fungal cultures were isolated from the rhizospheric soils of plants naturally growing at a zinc mine area in India and identified on the genus, respectively the species level. Aspergillus aeneus isolate NJP12 has been shown to have a high zinc metal tolerance ability and a potential for extracellular synthesis of ZnO nanoparticles under ambient conditions. UV–visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction analysis, transmission electron microscopy, and energy dispersive spectroscopy studies further confirmed the crystallinity, morphology, and composition of synthesized ZnO nanoparticles. The results revealed the synthesis of spherical nanoparticles coated with protein molecules which served as stabilizing agents. Investigations on the role of fungal extracellular proteins in the synthesis of nanoparticles indicated that the process is nonenzymatic but involves amino acids present in the protein chains.  相似文献   

5.
Synthesis of metallic nanoparticles using plant extracts   总被引:1,自引:0,他引:1  
Biomolecules present in plant extracts can be used to reduce metal ions to nanoparticles in a single-step green synthesis process. This biogenic reduction of metal ion to base metal is quite rapid, readily conducted at room temperature and pressure, and easily scaled up. Synthesis mediated by plant extracts is environmentally benign. The reducing agents involved include the various water soluble plant metabolites (e.g. alkaloids, phenolic compounds, terpenoids) and co-enzymes. Silver (Ag) and gold (Au) nanoparticles have been the particular focus of plant-based syntheses. Extracts of a diverse range of plant species have been successfully used in making nanoparticles. In addition to plant extracts, live plants can be used for the synthesis. Here we review the methods of making nanoparticles using plant extracts. Methods of particle characterization are reviewed and potential applications of the particles in medicine are discussed.  相似文献   

6.
Metal nanoparticles have been studied and applied in many areas including the biomedical, agricultural, electronic fields, etc. Several products of colloidal silver are already on the market. Research on new, eco-friendly and cheaper methods has been initiated. Biological production of metal nanoparticles has been studied by many researchers due to the convenience of the method that produces small particles stabilized by protein. However, the mechanism involved in this production has not yet been elucidated although hypothetical mechanisms have been proposed in the literature. Thus, this review discusses the various mechanisms provided for the biological synthesis of metal nanoparticles by peptides, bacteria, fungi, and plants. One thing that is clear is that the mechanistic aspects in some of the biological systems need more detailed studies.  相似文献   

7.
金纳米颗粒凭借其独特的光学和电化学特性,广泛应用于信息存储、化学传感、医学成像、药物传输以及生物标记等领域。近年来,生物法合成金纳米颗粒因其环境友好、绿色低毒等特点引起研究者的广泛关注。研究表明,多种微生物包括细菌、放线菌、真菌和病毒等均具有合成金纳米颗粒的能力。本文综述了微生物介导合成金纳米颗粒的特性、机制及应用,并对未来发展趋势进行了展望。  相似文献   

8.
In the present study, an eco-friendly process for the synthesis of nanomaterials using a fungus, Penicillium brevicompactum WA 2315 has been attempted. The fungus has been previously utilized for compactin production. Supernatant of seed culture was used for the biosynthesis of silver nanoparticles. The aqueous silver ions were reduced to silver metal nanoparticles when treated with the fungal supernatant. After 72 h of treatment, silver nanoparticles obtained were in the range of 23–105 nm as obtained from TEM. The nanoparticles were characterized by UV, FTIR, SEM, TEM and XRD. The use of supernatant of the seed media of the said fungus opens up the exciting possibility of rational strategy of biosynthesis of nanomaterials.  相似文献   

9.
Nanotechnology is relevant to diverse fields of science and technology. Due to the many advantages over non-biological systems, several research groups have exploited the use of biological systems for the synthesis of nanoparticles. Among the different microbes used for the synthesis of nanoparticles, fungi are efficient candidates for fabrication of metal nanoparticles both intra- and extracellulary. The nanoparticles synthesized using fungi present good polydispersity, dimensions and stability. The potential applications of nanotechnology and nanoparticles in different fields have revolutionized the health care, textile and agricultural industries and they are reviewed here.  相似文献   

10.
Green, low-cost, and reproducible Lactobacillus-mediated biosynthesis of metal and oxide nanoparticles are reported. Silver and titanium dioxide nanoparticles are synthesized using Lactobacillus sp. procured from yoghurt and probiotic tablets. The synthesis is performed akin to room temperature in the laboratory ambience. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of metallic and oxide nanoparticles. Individual nanoparticles having the dimensions of 10–25 nm (n-Ag) and 10–70 nm (n-TiO2) are found. The mechanism involved for the synthesis of metallic and oxide nanoparticles has also been discussed.  相似文献   

11.
基于来源丰富、独特的理化性质及生物学特性的壳聚糖与金属复合成为纳米材料的研究,引起了研究者广泛的关注。人们利用生物分子或生物有机体合成的金属纳米材料反应条件温和、产物形貌可控、重复性高等特点,结合金属纳米材料的"尺寸效应"与生物分子的自身特性来提高两者的协同功能,进一步拓展研究与应用领域的发展。以下针对近年来壳聚糖、壳聚糖体系金属纳米材料的研制及应用等领域进行简要的总结、评述和展望。  相似文献   

12.
Marine bionanotechnology is one of the most promising areas of research in modern science and technology. Although there are multitude methods for the synthesis of nanoparticles (NPs), there is an increasing attention in developing high-yield, low-cost, non-toxic and eco-friendly procedures. The vital advantages of greener synthesis are cost-effective, reduced usage of toxic chemicals and abundant availability of resources. During the last ten years, there have been many biological entities used to elevate novel, greener and affordable methods for the metal NPs synthesis. Rate of synthesis and stability are higher for plant material mediated NPs. However, in comparison with terrestrial resources, marine resources have not been fully explored for synthesis of noble metal NPs. Our present review is designed to speculate the importance of usage of vast marine resources and its mediated NPs synthesis, in particular seaweed-mediated NPs synthesis to overcome the limitations involved in physical and chemical methods. Finally, recent advancements in greener synthesis of metal NPs, their size, distribution, morphology and applications such as antimicrobial, antifouling and anticancer potentials are briefly described along with portraying the prospective scope of research in this field without any negative impact on the environment.  相似文献   

13.
In the recent past, various groups have proposed diverse biocompatible methods for the synthesis of metal nanoparticles (NPs). Besides culture biomass, culture supernatants (CS) are increasingly being explored for the synthesis of NPs; however, with the ever-increasing exploration of various CS in the biofabrication of NPs, it is equally important to explore the potential of various culture media (CMs) in the synthesis of metal NPs. Considering these aspects, in the present investigation, we explore the possible applicability of various CMs in the biofabrication of metal NPs. The synthesis of NPs was primarily followed by UV/VIS spectroscopy, and, thereafter, the NPs were characterized by various physiochemical techniques, including EM, EDX, FT_IR, X-ray diffraction, and DLS measurements, and finally, their anticancer potentialities were investigated against breast cancer. In addition, the NPs were examined in conjunction with artemisinin for therapeutic benefits against aggressive and highly metastatic MDA-MB-231 breast cancer cells. Cumulatively, the results of the present study collated the potentials of various bacterial CMs in the biofabrication of metal NPs and ascertained the efficacy of the as-synthesized silver nanoparticles, especially the combinatorial entity as intriguing breast cancer therapeutics. The data of the present study plausibly assist in advancing the therapeutic applicability of the combinatorial amalgam against aggressive and highly metastatic MDA-MB-231 breast cancer cells.  相似文献   

14.
The size and morphology determines the thermodynamic, physical and electronic properties of metal nanoparticles. The extracellular synthesis of gold nanoparticles by fungus, Cylindrocladium floridanum, which acts as a source of reducing and stabilizing agent has been described. The synthesized nanoparticles were characterized using techniques such as UV–Vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray analysis (EDAX), and high-resolution transmission electron microscopy (HR-TEM). Based on the evidence of HR-TEM, the synthesized particles were found to be spherical with an average size of 19.05 nm. Powder XRD pattern proved the formation of (111)-oriented face-centered cubic crystals of metallic gold. This microbial approach by fungus for the green synthesis of spherical gold nanoparticles has many advantages such as economic viability, scaling up and environment friendliness.  相似文献   

15.

Background

Gold nanoparticles (AuNPs) have found wide range of applications in electronics, biomedical engineering, and chemistry owing to their exceptional opto-electrical properties. Biological synthesis of gold nanoparticles by using plant extracts and microbes have received profound interest in recent times owing to their potential to produce nanoparticles with varied shape, size and morphology. Marine microorganisms are unique to tolerate high salt concentration and can evade toxicity of different metal ions. However, these marine microbes are not sufficiently explored for their capability of metal nanoparticle synthesis. Although, marine water is one of the richest sources of gold in the nature, however, there is no significant publication regarding utilization of marine micro-organisms to produce gold nanoparticles. Therefore, there might be a possibility of exploring marine bacteria as nanofactories for AuNP biosynthesis.

Results

In the present study, marine bacteria are exploited towards their capability of gold nanoparticles (AuNPs) production. Stable, monodisperse AuNP formation with around 10?nm dimension occur upon exposure of HAuCl4 solution to whole cells of a novel strain of Marinobacter pelagius, as characterized by polyphasic taxonomy. Nanoparticles synthesized are characterized by Transmission electron microscopy, Dynamic light scattering and UV-visible spectroscopy.

Conclusion

The potential of marine organisms in biosynthesis of AuNPs are still relatively unexplored. Although, there are few reports of gold nanoparticles production using marine sponges and sea weeds however, there is no report on the production of gold nanoparticles using marine bacteria. The present work highlighted the possibility of using the marine bacterial strain of Marinobacter pelagius to achieve a fast rate of nanoparticles synthesis which may be of high interest for future process development of AuNPs. This is the first report of AuNP synthesis by marine bacteria.  相似文献   

16.
白蚁与微生物的共生关系是目前较受关注的研究热点,其肠道及巢内的共生微生物在降解木质纤维素的过程中扮演着重要的角色。放线菌是这些共生微生物中的重要一类,广泛存在于肠道、蚁巢及其周围土壤中,目前已探明共生放线菌在参与白蚁碳氮循环及保护巢群免受外来病菌侵染等方面发挥着极大的作用。近年来,人们利用分子生物学技术鉴定了部分共生放线菌的类群,发现了许多具应用前景的新放线菌及相关酶和代谢产物。因此,研究与白蚁相关的放线菌不仅有助于人们了解白蚁共生菌群落间的互作及其与宿主间的关系,而且对人类开发自然资源也有较大的帮助。本文对白蚁共生放线菌的研究进展作一综述,供同行参考。  相似文献   

17.

Background

Microorganisms that are exposed to pollutants in the environment, such as metals/metalloids, have a remarkable ability to fight the metal stress by various mechanisms. These metal-microbe interactions have already found an important role in biotechnological applications. It is only recently that microorganisms have been explored as potential biofactories for synthesis of metal/metalloid nanoparticles. Biosynthesis of selenium (Se0) nanospheres in aerobic conditions by a bacterial strain isolated from the coalmine soil is reported in the present study.

Results

The strain CM100B, identified as Bacillus cereus by morphological, biochemical and 16S rRNA gene sequencing [GenBank:GU551935.1] was studied for its ability to generate selenium nanoparticles (SNs) by transformation of toxic selenite (SeO3 2-) anions into red elemental selenium (Se0) under aerobic conditions. Also, the ability of the strain to tolerate high levels of toxic selenite ions was studied by challenging the microbe with different concentrations of sodium selenite (0.5 mM-10 mM). ESEM, AFM and SEM studies revealed the spherical Se0 nanospheres adhering to bacterial biomass as well as present as free particles. The TEM microscopy showed the accumulation of spherical nanostructures as intracellular and extracellular deposits. The deposits were identified as element selenium by EDX analysis. This is also indicated by the red coloration of the culture broth that starts within 2-3 h of exposure to selenite oxyions. Selenium nanoparticles (SNs) were further characterized by UV-Visible spectroscopy, TEM and zeta potential measurement. The size of nanospheres was in the range of 150-200 nm with high negative charge of -46.86 mV.

Conclusions

This bacterial isolate has the potential to be used as a bionanofactory for the synthesis of stable, nearly monodisperse Se0 nanoparticles as well as for detoxification of the toxic selenite anions in the environment. A hypothetical mechanism for the biogenesis of selenium nanoparticles (SNs) involving membrane associated reductase enzyme(s) that reduces selenite (SeO3 2-) to Se0 through electron shuttle enzymatic metal reduction process has been proposed.  相似文献   

18.
张晓蓉 《微生物学报》2011,51(3):297-304
基于发展纳米材料"绿色合成技术"重要性,生物合成纳米材料已成为纳米合成技术研究热点。微生物具有廉价、易培养、繁殖快等优点被应用于多种纳米材料的生物合成研究,成为生物合成纳米材料的重要生物类群。本文综述了细菌、放线菌、酵母菌以及真菌等微生物应用于纳米生物合成技术的发展;着重评述了纳米材料微生物合成生物方法、纳米材料微生物合成相关机制、纳米材料形貌和尺寸微生物调控合成方法以及应用研究进展;并对纳米材料微生物合成技术未来发展趋势进行了展望。  相似文献   

19.

Background  

The synthesis of gold nanoparticles (GNPs) has received considerable attention with their potential applications in various life sciences related applications. Recently, there has been tremendous excitement in the study of nanoparticles synthesis by using some natural biological system, which has led to the development of various biomimetic approaches for the growth of advanced nanomaterials. In the present study, we have demonstrated the synthesis of gold nanoparticles by a novel bacterial strain isolated from a site near the famous gold mines in India. A promising mechanism for the biosynthesis of GNPs by this strain and their stabilization via charge capping was investigated.  相似文献   

20.
Copper nanoparticles have been the focus of intensive study due to their potential applications in diverse fields including biomedicine, electronics, and optics. Copper-based nanostructured materials have been used in conductive films, lubrification, nanofluids, catalysis, and also as potent antimicrobial agent. The biogenic synthesis of metallic nanostructured nanoparticles is considered to be a green and eco-friendly technology since neither harmful chemicals nor high temperatures are involved in the process. The present review discusses the synthesis of copper nanostructured nanoparticles by bacteria, fungi, and plant extracts, showing that biogenic synthesis is an economically feasible, simple and non-polluting process. Applications for biogenic copper nanoparticles are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号