首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature, salinity, micronutrients, seston components and mesozooplankton were measured on a cruise in the eastern German Bight during November 1976. Three different water bodies and a mixing area which is divided into two subareas could be identified. The water masses differed significantly in regard to temperature, salinity, micronutrients and seston components. In some cases differences in the amounts of mesozooplankton could be found. Temperature and salinity of the water of the Elbe estuary and of the Wadden Sea were relatively low, but amounts of micronutrients and seston were high, whereas the water of the North Sea water body was of higher temperature and salinity with lower amounts of micronutrients and seston. The North Frisian coastal water and a southern mixing area can be regarded as mixing areas between these water bodies.  相似文献   

2.
Nitrification plays a significant role in the global nitrogen cycle, and this concept has been challenged with the discovery of ammonia-oxidizing archaea (AOA) in the environment. In this paper, the vertical variations of the diversity and abundance of AOA in the hyporheic zone of the Fuyang River in North China were investigated by molecular techniques, including clone libraries, phylogenetic analysis and real-time polymerase chain reaction. The archaeal amoA gene was detected in all sediments along the profile, and all AOA fell within marine group 1.1a and soil group1.1b of the Thaumarchaeota phylum, with the latter being the dominant type. The diversity of AOA decreased with the sediment depth, and there was a shift in AOA community between top-sediments (0–5 cm) and sub-sediments (5–70 cm). The abundance of the archaeal amoA gene (1.48 × 107 to 5.50 × 107 copies g?1 dry sediment) was higher than that of the bacterial amoA gene (4.01 × 104 to 1.75 × 10copies g?1 dry sediment) in sub-sediments, resulting in a log10 ratio of AOA to ammonia-oxidizing bacteria (AOB) from 2.27 to 2.69, whereas AOB outnumbered AOA in top-sediments with a low log10 ratio of (?0.24). The variations in the AOA community were primarily attributed to the combined effect of the nutrients (ammonium-N, nitrate-N and total organic carbon) and oxygen in sediments. Ammonium-N was the major factor influencing the relative abundance of AOA and AOB, although other factors, such as total organic carbon, were involved. This study helps elucidate the roles of AOA and AOB in the nitrogen cycling of hyporheic zone.  相似文献   

3.
4.
The role of ammonia-oxidizing archaea (AOA) in nitrogen cycling in marine sediments remains poorly characterized. In this study, we enriched and characterized AOA from marine sediments. Group I.1a crenarchaea closely related to those identified in marine sediments and “Candidatus Nitrosopumilus maritimus” (99.1 and 94.9% 16S rRNA and amoA gene sequence identities to the latter, respectively) were substantially enriched by coculture with sulfur-oxidizing bacteria (SOB). The selective enrichment of AOA over ammonia-oxidizing bacteria (AOB) is likely due to the reduced oxygen levels caused by the rapid initial growth of SOB. After biweekly transfers for ca. 20 months, archaeal cells became the dominant prokaryotes (>80%), based on quantitative PCR and fluorescence in situ hybridization analysis. The increase of archaeal 16S rRNA gene copy numbers was coincident with the amount of ammonia oxidized, and expression of the archaeal amoA gene was observed during ammonia oxidation. Bacterial amoA genes were not detected in the enrichment culture. The affinities of these AOA to oxygen and ammonia were substantially higher than those of AOB. [13C]bicarbonate incorporation and the presence and activation of genes of the 3-hydroxypropionate/4-hydroxybutyrate cycle indicated autotrophy during ammonia oxidation. In the enrichment culture, ammonium was oxidized to nitrite by the AOA and subsequently to nitrate by Nitrospina-like bacteria. Our experiments suggest that AOA may be important nitrifiers in low-oxygen environments, such as oxygen-minimum zones and marine sediments.Archaea have long been known as extremophiles, since most cultivated archaeal strains were cultivated from extreme environments, such as acidic, hot, and high-salt environments. The view of archaea as extremophiles (i.e., acidophiles, thermophiles, and halophiles) has radically changed by the application of molecular technologies, including PCR in environmental microbiology. Using Archaea-specific PCR primers, novel archaeal 16S rRNA gene sequences were discovered in seawater (23, 27). Following these discoveries, an ever-increasing and unexpectedly high variety of archaeal 16S rRNA gene sequences has been reported from diverse “nonextreme” environments (67). This indicates that archaea are, like bacteria, ubiquitous in the biosphere rather than exclusively inhabiting specific extreme niches. Archaea are abundant in water columns of some oceanic provinces (33, 36) and deep-subsea floor sediments (11, 12, 48). Despite the increasing number of reports of the diversity and abundance of these nonextreme archaea by molecular ecological studies, their physiology and ecological roles have remained enigmatic.Oxidation of ammonia, a trait long thought to be exclusive to the domain Bacteria (13), was recently suggested to be a trait of archaea of the crenarchaeal groups I.1a and I.1b, based on a metagenome analysis (79) and supported by the discovery of archaeal amoA-like genes in environmental shotgun sequencing studies of Sargasso Sea water (80) and genomic analysis of “Candidatus Cenarchaeum symbiosum,” a symbiont of a marine sponge (30). Molecular ecological studies indicated that these ammonia-oxidizing archaea (AOA) are often predominant over ammonia-oxidizing bacteria (AOB) in ocean waters (9, 53, 87), soils (17, 47), and marine sediments (61). Critical evidence for autotrophic archaeal ammonia oxidation was obtained by the characterization of the first cultivated mesophilic crenarchaeon (group I.1a), “Candidatus Nitrosopumilus maritimus SCM1,” from an aquarium (38), and a related archaeon from North Sea water (87) and subsequently by enrichment of thermophilic AOA (22, 31). Whole-genome-based phylogenetic studies recently indicated that the nonthermophilic crenarchaea, including the AOA, likely form a phylum separate from the Crenarchaeota and Euryarchaeota phyla (15, 16, 72). This proposed new phylum was called Thaumarchaeota (15).Microorganisms in marine sediments contribute significantly to global biogeochemical cycles because of their abundance (85). Nitrification is essential to the nitrogen cycle in marine sediments and may be metabolically coupled with denitrification and anaerobic ammonium oxidation, resulting in the removal of nitrogen as molecular nitrogen and the generation of greenhouse gases, such as nitrous oxide (19, 75). Compared with studies on archaeal nitrification in the marine water column, only limited information on archaeal nitrification in marine sediments is available so far. Archaeal amoA genes have been retrieved from marine and coastal sediments (8, 26, 61), and the potentially important role of AOA in nitrification has been suggested based on the abundance of archaeal amoA genes relative to that of bacterial amoA genes in surface marine sediments from Donghae (South Korea) (61). Cultivation of AOA, although difficult (38), remains essential to estimating the metabolic potential of archaea in environments such as soils (47) and marine sediments (61). Here, we report the successful enrichment of AOA of crenarchaeal group I.1a from marine sediments by employing a coculture with sulfur-oxidizing bacteria (SOB) which was maintained for ca. 20 months with biweekly transfers. In this way, we were able to characterize AOA from marine sediments, providing a clue for the role of AOA in the nitrogen cycle of marine sediments.  相似文献   

5.
Several groups of Archaea, all Euryarchaeota, develop in hypersaline environments (from >10 % salt up to saturation). The cultured diversity of halophilic Archaea includes the family Halobacteriaceae of aerobic or facultative anaerobic, generally red-pigmented species (47 genera and 165 species as of February 2014) and seven representatives of four genera of methanogens, most of which obtain energy from methylated amines under anaerobic conditions. Metagenomic studies have identified an additional deep lineage of Archaea in salt lakes and ponds with brines approaching NaCl saturation. Genomic information is now available for representatives of these ‘Nanohaloarchaea’, but no members of this lineage have yet been cultured. Multilocus sequence analysis is becoming increasingly popular in taxonomic studies of the Halobacteriaceae, and such studies have demonstrated that recombination of genetic traits occurs at an extremely high frequency at least in some genera. Metagenomic studies in an Antarctic lake showed that large identical regions of up to 35 kb in length can be shared by members of different genera living together in the same environment. Such observations have important implications not only for the taxonomy of the Halobacteriaceae, but also for species concepts and questions on taxonomy and classification for prokaryotic microorganisms in general.  相似文献   

6.
Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, has been suggested to have been a central part of the global biogeochemical nitrogen cycle since the oxygenation of Earth. The cultivation of several ammonia-oxidizing archaea (AOA) as well as the discovery that archaeal ammonia monooxygenase (amo)-like gene sequences are nearly ubiquitously distributed in the environment and outnumber their bacterial counterparts in many habitats fundamentally revised our understanding of nitrification. Surprising insights into the physiological distinctiveness of AOA are mirrored by the recognition of the phylogenetic uniqueness of these microbes, which fall within a novel archaeal phylum now known as Thaumarchaeota. The relative importance of AOA in nitrification, compared to ammonia-oxidizing bacteria (AOB), is still under debate. This minireview provides a synopsis of our current knowledge of the diversity and physiology of AOA, the factors controlling their ecology, and their role in carbon cycling as well as their potential involvement in the production of the greenhouse gas nitrous oxide. It emphasizes the importance of activity-based analyses in AOA studies and formulates priorities for future research.  相似文献   

7.
So far, the contribution of ammonia-oxidizing archaea (AOA) to ammonia oxidation in wastewater treatment processes has not been well understood. In this study, two soil aquifer treatment (SATs) systems were built up to treat synthetic domestic wastewater (column 1) and secondary effluent (column 4), accomplishing an average of 95 % ammonia removal during over 550 days of operation. Except at day 322, archaeal amoA genes always outnumbered bacterial amoA genes in both SATs as determined by using quantitative polymerase chain reaction (q-PCR). The ratios of archaeal amoA to 16S rRNA gene averaged at 0.70?±?0.56 and 0.82?±?0.62 in column 1 and column 4, respectively, indicating that all the archaea could be AOA carrying amoA gene in the SATs. The results of MiSeq-pyrosequencing targeting on archaeal and bacterial 16S rRNA genes with the primer pair of modified 515R/806R indicated that Nitrososphaera cluster affiliated with thaumarchaeal group I.1b was the dominant AOA species, while Nitrosospira cluster was the dominant ammonia-oxidizing bacteria (AOB). The statistical analysis showed significant relationship between AOA abundance (compared to AOB abundance) and inorganic and total nitrogen concentrations. Based on the mathematical model calculation for microbial growth, AOA had much greater capacity of ammonia oxidation as compared to the specific influent ammonia loading for AOA in the SATs, implying that a small fraction of the total AOA would actively work to oxidize ammonia chemoautotrophically whereas most of AOA would exhibit some level of functional redundancy. These results all pointed that AOA involved in microbial ammonia oxidation in the SATs.  相似文献   

8.
9.
The genetic diversity and distribution of ammonia-oxidizing Archaea (AOA) in nine seasonally frozen soils sampled around the city of Harbin, China, is analyzed based on archaeal amoA gene. Soil samples are divided into four groups by its properties: fertilized/unfertilized mesic (well-balanced supply of moisture) soils and fertilized/unfertilized hydric (abundant of moisture) soils. Clone libraries based on AOA amoA gene polymerase chain reaction products are constructed, and the phylogenetic analysis at 5 % cutoff level shows that AOA members mainly belong to the soil/sediment lineage which includes four clusters, and very few archaeal amoA gene sequences fall into the marine lineage. The four groups of soils have different archaeal amoA gene assemblage, and the available nitrogen and organic carbon are significantly correlated with diversity indexes. The result shows that long-term artificial amendment such as fertilization and agriculture cultivation has an important impact on AOA community shift in terrestrial environment. Moisture may drive the shape of different AOA communities by changing the aerobic environment into anaerobic. Soil composition is another noticeable factor effect AOA community, which can help the shape of a special AOA community with only two species.  相似文献   

10.
The microbial community compositions and potential ammonia oxidation in the topsoil at different positions of sand dune (stoss slope, crest, lee slope, and interdune) from the Gurbantunggut Desert, the largest semi-fixed desert in China, were investigated using several molecular methods. Actinobacteria and Proteobacteria (especially Alphaproteobacteria) were commonly the dominant taxa across all soil samples. Bacterial communities were similar in soils collected from the stoss slopes and interdunes (HC-BSCs, biological soil crusts with a high abundance of cyanobacteria), containing more abundant cyanobacterial populations (16.9–24.5%) than those (0.2–0.7% of Cyanobacteria) in the crests and lee slopes (LC-BSCs, biological soil crusts with a low abundance of cyanobacteria). The Cyanobacteria were mainly composed of Microcoleus spp., and quantitative PCR analysis revealed that 16S rRNA gene copy numbers of Cyanobacteria (especially genus Microcoleus) were at least two orders of magnitude higher in HC-BSCs than in LC-BSCs. Heterotrophic Geodermatophilus spp. frequently occurred in HC-BSCs (2.5–8.0%), whereas genera Arthrobacter, Bacillus, and Segetibacter were significantly abundant in LC-BSC communities. By comparison, the desert archaeal communities were less complex, and were dominated by Nitrososphaera spp. The amoA gene abundance of ammonia-oxidizing archaea (AOA) was higher than that of ammonia-oxidizing bacteria (AOB) in all soil samples, particularly in the interdunal soils (106–108 archaeal amoA gene copies per gram dry soil), indicating that AOA possibly dominate the ammonia oxidation at the interdunes.  相似文献   

11.
Poly- and perfluoroalkyl compounds (PFASs) are ubiquitous in the environment, but their influences on microbial community remain poorly known. The present study investigated the depth-related changes of archaeal and bacterial communities in PFAS-contaminated soils. The abundance and structure of microbial community were characterized using quantitative PCR and high-throughput sequencing, respectively. Microbial abundance changed considerably with soil depth. The richness and diversity of both bacterial and archaeal communities increased with soil depth. At each depth, bacterial community was more abundant and had higher richness and diversity than archaeal community. The structure of either bacterial or archaeal community displayed distinct vertical variations. Moreover, a higher content of perfluorooctane sulfonate (PFOS) could have a negative impact on bacterial richness and diversity. The rise of soil organic carbon content could increase bacterial abundance but lower the richness and diversity of both bacterial and archaeal communities. In addition, Proteobacteria, Actinobacteria, Chloroflexi, Cyanobacteria, and Acidobacteria were the major bacterial groups, while Thaumarchaeota, Euryarchaeota, and unclassified Archaea dominated in soil archaeal communities. PFASs could influence soil microbial community.  相似文献   

12.
A systematic study of more than 15,000Myriophyllum specimens from 189 North American herbaria yielded 63M. quitense specimens. Late 19th century collections were made from Henry's Fork of the Snake River in Jefferson County, Idaho, in 1872, from Santa Cruz Creek, Tucson, Pima County, Arizona, in 1881, from Yellowstone Lake in 1885, and from Crook County, Oregon, in 1894. Twentieth century collections have been made from Yellowstone National Park, at several sites along the Snake River in Idaho, in Summit County, Utah, in Lassen and Shasta counties of northern California, at numerous sites along the Deschutes River, and in Benton County, Oregon, and at three sites in Washington. We contend that the species was introduced into North America by migratory waterfowl more than 100 years ago. Only in the Yellowstone Lake and numerous Deschutes River habitats in which populations now exist are environmental conditions conducive to full morphological development of the species in North America.  相似文献   

13.
Nitrification within estuarine sediments plays an important role in the nitrogen cycle, both at the global scale and in individual estuaries. Although bacteria were once thought to be solely responsible for catalyzing the first and rate-limiting step of this process, several recent studies have suggested that mesophilic Crenarchaeota are capable of performing ammonia oxidation. Here we examine the diversity (richness and community composition) of ammonia-oxidizing archaea (AOA) and bacteria (AOB) within sediments of Bahía del Tóbari, a hypernutrified estuary receiving substantial amounts of ammonium in agricultural runoff. Using PCR primers designed to specifically target the archaeal ammonia monooxygenase α-subunit (amoA) gene, we found AOA to be present at five sampling sites within this estuary and at two sampling time points (January and October 2004). In contrast, the bacterial amoA gene was PCR amplifiable from only 40% of samples. Bacterial amoA libraries were dominated by a few widely distributed Nitrosomonas-like sequence types, whereas AOA diversity showed significant variation in both richness and community composition. AOA communities nevertheless exhibited consistent spatial structuring, with two distinct end member assemblages recovered from the interior and the mouths of the estuary and a mixed assemblage from an intermediate site. These findings represent the first detailed examination of archaeal amoA diversity in estuarine sediments and demonstrate that diverse communities of Crenarchaeota capable of ammonia oxidation are present within estuaries, where they may be actively involved in nitrification.  相似文献   

14.
We described the fish assemblage in the estuary of the Guaraguaçu River (one of the largest tributaries of the Paranaguá Bay Estuary, located within Brazil’s Atlantic Forest Biosphere Reserve) from June 2005 to May 2006, and assessed the seasonal and spatial effects of abiotic environmental attributes on the fish assemblage structure. Despite some oscillations in salinity, the upper and lower estuaries had year-round persistent oligohaline and polyhaline conditions, respectively. Despite high species richness (55 species), the Guaraguaçu River Estuary fish community contains a few dominant taxa; 11% of the richness accounts for >60% of its density and biomass. The most abundant species (in terms of both biomass and density) was Atherinella brasiliensis. Species whose densities were most strongly associated with the upper estuary were Centropomus parallelus, Ctenogobius schufeldti, Eucinostomus melanopterus, Platanichthys platana, Trinectes paulistanus, and Eugerres brasilianus. Those whose densities were most strongly associated with the lower estuary were A. brasiliensis, Sphoeroides greeleyi, Eucinostomus argenteus, Sphoeroides testudineus, Diapterus rhombeus, and Harengula clupeola. Throughout the year, canonical correspondence analysis identified: (1) the pattern of horizontal stratification of salinity along the river as being the most important variable for explaining most of the fish fauna structure; and (2) a strong relationship between the fish fauna and the salinity gradient along the estuary. Analysis of similarity further confirmed that each estuarine zone supports a year-round persistent and relatively homogeneous fish species assemblage. Total mean density and biomass remained constant over time in each estuarine habitat, but density shifted in the most abundant species, which appears related to recruitment patterns. Such species and abundance persistence likely occurs because seasonal rainfall-induced changes in river discharge are not sufficient to significantly shift runoff and salinity and thus fish assemblage structure (species composition, density and biomass) along the estuary. Such a lack of seasonal fish fauna movement as a response to changes in river flow contrasts with other estuarine systems around the world.  相似文献   

15.
Environmental shaping of sponge associated archaeal communities   总被引:1,自引:0,他引:1  

Background

Archaea are ubiquitous symbionts of marine sponges but their ecological roles and the influence of environmental factors on these associations are still poorly understood.

Methodology/Principal Findings

We compared the diversity and composition of archaea associated with seawater and with the sponges Hymeniacidon heliophila, Paraleucilla magna and Petromica citrina in two distinct environments: Guanabara Bay, a highly impacted estuary in Rio de Janeiro, Brazil, and the nearby Cagarras Archipelago. For this we used metagenomic analyses of 16S rRNA and ammonia monooxygenase (amoA) gene libraries. Hymeniacidon heliophila was more abundant inside the bay, while P. magna was more abundant outside and P. citrina was only recorded at the Cagarras Archipelago. Principal Component Analysis plots (PCA) generated using pairwise unweighted UniFrac distances showed that the archaeal community structure of inner bay seawater and sponges was different from that of coastal Cagarras Archipelago. Rarefaction analyses showed that inner bay archaeaoplankton were more diverse than those from the Cagarras Archipelago. Only members of Crenarchaeota were found in sponge libraries, while in seawater both Crenarchaeota and Euryarchaeota were observed. Although most amoA archaeal genes detected in this study seem to be novel, some clones were affiliated to known ammonia oxidizers such as Nitrosopumilus maritimus and Cenarchaeum symbiosum.

Conclusion/Significance

The composition and diversity of archaeal communities associated with pollution-tolerant sponge species can change in a range of few kilometers, probably influenced by eutrophication. The presence of archaeal amoA genes in Porifera suggests that Archaea are involved in the nitrogen cycle within the sponge holobiont, possibly increasing its resistance to anthropogenic impacts. The higher diversity of Crenarchaeota in the polluted area suggests that some marine sponges are able to change the composition of their associated archaeal communities, thereby improving their fitness in impacted environments.  相似文献   

16.
Diversity and abundance of ammonia-oxidizing Betaproteobacteria (β-AOB) and archaea (AOA) were investigated in a New England salt marsh at sites dominated by short or tall Spartina alterniflora (SAS and SAT sites, respectively) or Spartina patens (SP site). AOA amoA gene richness was higher than β-AOB amoA richness at SAT and SP, but AOA and β-AOB richness were similar at SAS. β-AOB amoA clone libraries were composed exclusively of Nitrosospira-like amoA genes. AOA amoA genes at SAT and SP were equally distributed between the water column/sediment and soil/sediment clades, while AOA amoA sequences at SAS were primarily affiliated with the water column/sediment clade. At all three site types, AOA were always more abundant than β-AOB based on quantitative PCR of amoA genes. At some sites, we detected 109 AOA amoA gene copies g of sediment−1. Ratios of AOA to β-AOB varied over 2 orders of magnitude among sites and sampling dates. Nevertheless, abundances of AOA and β-AOB amoA genes were highly correlated. Abundance of 16S rRNA genes affiliated with Nitrosopumilus maritimus, Crenarchaeota group I.1b, and pSL12 were positively correlated with AOA amoA abundance, but ratios of amoA to 16S rRNA genes varied among sites. We also observed a significant effect of pH on AOA abundance and a significant salinity effect on both AOA and β-ΑΟΒ abundance. Our results expand the distribution of AOA to salt marshes, and the high numbers of AOA at some sites suggest that salt marsh sediments serve as an important habitat for AOA.Nitrification, the sequential oxidation of ammonia to nitrite and nitrate, is a critical step in the nitrogen cycle and is mediated by a suite of phylogenetically and physiologically distinct microorganisms. The recent discovery of ammonia oxidation among Archaea (17, 38) has led to a dramatic shift in the current model of nitrification and to new questions of niche differentiation between putative ammonia-oxidizing Archaea (AOA) and the more-well-studied ammonia-oxidizing Betaproteobacteria (β-AOB). Based on surveys of 16S rRNA genes and archaeal amoA genes, it is evident that AOA occupy a wide range of niches (10), suggesting a physiologically diverse group of Archaea. Additionally, in studies where AOA and β-AOB were both targeted, AOA were typically more abundant than their bacterial counterparts (19, 21, 42). However, there are reports of β-AOB outnumbering AOA in estuarine systems (6, 33), suggesting a possible shift in competitive dominance under certain conditions.Patterns of β-AOB diversity in estuaries have been well characterized and appear to be regulated by similar mechanisms within geographically disparate systems (4, 11, 32). However, AOA distribution and their role in nitrification relative to β-AOB remain to be determined. A few studies have begun to address this question in different estuaries, but no unifying patterns or mechanisms have emerged. Although β-AOB have been well studied along estuarine salinity gradients (1, 3, 4, 7, 11, 13, 22, 33, 39) and recent studies have begun to address AOA in estuaries (1, 6, 22, 32, 33), few have investigated β-AOB in salt marshes (9), and none has included AOA.In this study, we investigated the distribution and abundance of AOA and β-AOB based on the distribution and abundance of amoA genes in salt marsh sediments dominated by different types of vegetation. Although we equate the presence of archaeal amoA genes with the genetic potential to oxidize ammonia, we acknowledge the possibility that all Archaea that have amoA genes may not all represent functional ammonia oxidizers. Vegetation patterns of New England salt marshes are strongly correlated with marsh elevation and are controlled by a combination of interspecific competition and tolerance to physico-chemical stress (28). The dominant grasses of New England salt marshes are Spartina alterniflora and Spartina patens, which typically grow as pure stands. S. alterniflora is found in two phenotypically distinct but genetically identical forms, a tall and a short growth form (34). The tall S. alterniflora grows to heights of 1 to 2 m and is typically found at the edges of the marsh and along creek banks (SAT sites), while the short-form S. alterniflora may reach heights of only 30 cm and is found in sites (SAS sites) slightly higher on the marsh where soil drainage is limited and conditions are more reduced compared to SAT sites (14). Conversely, S. patens, due to its lower tolerance of salt and more reduced conditions, is found in sites (SP sites) highest on the marsh, in areas that receive less flooding (5). Because the marsh is subjected to daily tidal fluctuations, most sites experience periods of anoxia, the degree of which depends on the marsh elevation. We hypothesized that ammonia-oxidizing communities in areas dominated by different marsh grasses would reflect the different edaphic conditions associated with each type of grass, due to differences in vertical zonation in the marsh.  相似文献   

17.
曾志华  杨民和  佘晨兴  仝川 《生态学报》2014,34(10):2674-2681
为认识盐度对河口潮汐沼泽湿地土壤产甲烷菌的影响,应用PCR-RFLP技术及测序分析对闽江河口区淡水-半咸水盐度梯度上分布的4个短叶茳芏潮汐沼泽湿地土壤产甲烷菌群落结构进行研究。闽江河口区短叶茳芏潮汐沼泽湿地土壤产甲烷菌群落结构受盐度影响明显,位于下洋洲和塔礁洲的短叶茳芏潮汐淡水沼泽湿地土壤产甲烷菌的香农-威纳多样性指数值分别为2.81和2.65,位于蝙蝠洲和鳝鱼滩的短叶茳芏潮汐半咸水沼泽湿地土壤产甲烷菌香农-威纳多样性指数值分别仅为2.33和2.27。系统发育分析表明:短叶茳芏沼泽湿地土壤产甲烷菌类群主要有甲烷杆菌目(Methanobacteriales),包括Methanobacterium、Methanobrevibacter和Methanobacteriaceae;甲烷微菌目(Methanomicrobiales),主要有Methanoregula,以及甲烷八叠球菌目(Methanosarcinales),主要有Methanosarcina和Methanococcoides。闽江河口区短叶茳芏潮汐淡水沼泽湿地土壤主要的优势产甲烷菌有Methanoregula、Methanosarcina和Methanobacterium,而短叶茳芏潮汐半咸水沼泽湿地土壤主要的优势产甲烷菌则转化为仅以Methanoregula为主。  相似文献   

18.
The Asian clam, Corbicula fluminea, is among the most pervasive invasive species in freshwater ecosystems worldwide. Our objective was to study C. fluminea’s functional response in terms of feeding behavior and food selectivity, using the natural variation in organic matter (OM) sources that occur in estuarine environments. Using C and N stable isotopes, we identified and quantified the contribution of different OM sources supporting the production of C. fluminea along the salinity gradient occupied in the Minho River estuary (NW-Iberian Peninsula, Europe), where this species presently dominates the benthic macrofauna biomass. We observed a pronounced shift in the quality of OM available for C. fluminea along the estuarine mixing zone. Stable isotope analysis, POM C/N, and phytoplankton contribution estimates based on C:Chl a revealed that POM was largely comprised of terrestrial-derived OM in tidal freshwater stations (TFW) and was increasingly comprised of phytoplankton, a more palatable food source, towards the polyhaline estuary. A similar shift in the isotopic composition along the estuarine mixing zone was observed in C. fluminea, suggesting a shift in food resources. Accordingly, based on a Bayesian stable isotope mixing model, there was an upstream–downstream counter gradient in the contribution to C. fluminea biomass from terrestrial-derived OM (41–64 % in TFW) and phytoplankton (29–55 % in the brackish estuary). Although the majority of the food sources identified were filtered from the water column (70–80 %), reliance on sediment OM and microphytobenthos provided evidence for deposit feeding by C. fluminea. We conclude that C. fluminea has the ability to adapt to environments with low food quality because it can consume terrestrial-derived OM. This can be a competitive adaptation in systems with perennial low food quality such as the Minho River estuary. Moreover, its ability to couple benthic and pelagic environments and terrestrial ecosystems demonstrates a strong potential to alter food web flows in aquatic ecosystems.  相似文献   

19.
The variation in the diversity of methanogens in sediment depths from Sitka stream was studied by constructing a 16S rRNA gene library using methanogen-specific primers and a denaturing gradient gel electrophoresis (DGGE)-based approach. A total of nine different phylotypes from the 16S rRNA library were obtained, and all of them were clustered within the order Methanosarcinales. These nine phylotypes likely represent nine new species and at least 5–6 new genera. Similarly, DGGE analysis revealed an increase in the diversity of methanogens with an increase in sediment depth. These results suggest that Methanosarcinales phylotypes might be the dominant methanogens in the sediment from Sitka stream, and the diversity of methanogens increases as the depth increases. Results of the present study will help in making effective strategies to monitor the dominant methanogen phylotypes and methane emissions in the environment.  相似文献   

20.
Sponges accommodate a diverse group of microorganisms with varied metabolic capabilities. The bacterial associates of sponges are widely studied while our understanding of archaeal counterparts is scanty. In the present study, we report the archaeal associates of two sponges, Pseudoceratina purpurea (NCBI barcode: KX454492) and Cinachyra sp. (NCBI barcode: KX454495), found in the coral reef ecosystems of Gulf of Mannar, India. Archaea in the water column was predominated by members of class Halobacteria of Phylum Euryarchaeota (97%) followed by a minor fraction (3%) of Nitrosopumilus sp. of phylum Thaumarchaeota. Interestingly, Thaumarchaeota was identified as the sole archaeal population associated with the two sponges studied, among which Nitrosopumilus sp. occuppied 80 and 100% of the sequences in the clone library of P. purpurea and Cinachyra sp. respectively. Other archaea found in the P. purpurea were Nitrososphaera (10%) and unclassified ones (10%). The study identified Nitrosopumilus sp. as a unique symbiotic archaeon of sponges, P. purpurea and Cinachyra sp. The existence of host driven factors in selecting specific associates from a diverse group of archaea in the environment may need further investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号