首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TfCut2 from Thermobifida fusca KW3 and the metagenome‐derived LC‐cutinase are bacterial polyester hydrolases capable of efficiently degrading polyethylene terephthalate (PET) films. Since the enzymatic PET hydrolysis is inhibited by the degradation intermediate mono‐(2‐hydroxyethyl) terephthalate (MHET), a dual enzyme system consisting of a polyester hydrolase and the immobilized carboxylesterase TfCa from Thermobifida fusca KW3 was employed for the hydrolysis of PET films at 60°C. HPLC analysis of the reaction products obtained after 24 h of hydrolysis showed an increased amount of soluble products with a lower proportion of MHET in the presence of the immobilized TfCa. The results indicated a continuous hydrolysis of the inhibitory MHET by the immobilized TfCa and demonstrated its advantage as a second biocatalyst in combination with a polyester hydrolase for an efficient degradation oft PET films. The dual enzyme system with LC‐cutinase produced a 2.4‐fold higher amount of degradation products compared to TfCut2 after a reaction time of 24 h confirming the superior activity of his polyester hydrolase against PET films.  相似文献   

2.
Thermobifida fusca produces two cutinases which share 93% identity in amino acid sequence. In the present study, we investigated the detailed biochemical properties of T. fusca cutinases for the first time. For a better comparison between bacterial and fungal cutinases, recombinant Fusarium solani pisi cutinase was subjected to the similar analysis. The results showed that both bacterial and fungal cutinases are monomeric proteins in solution. The bacterial cutinases exhibited a broad substrate specificity against plant cutin, synthetic polyesters, insoluble triglycerides, and soluble esters. In addition, the two isoenzymes of T. fusca and the F. solani pisi cutinase are similar in substrate kinetics, the lack of interfacial activation, and metal ion requirements. However, the T. fusca cutinases showed higher stability in the presence of surfactants and organic solvents. Considering the versatile hydrolytic activity, good tolerance to surfactants, superior stability in organic solvents, and thermostability demonstrated by T. fusca cutinases, they may have promising applications in related industries.  相似文献   

3.
A lipase from Thermomyces lanuginosus and cutinases from Thermobifida fusca and Fusarium solani hydrolysed poly(ethylene terephthalate) (PET) fabrics and films and bis(benzoyloxyethyl) terephthalate (3PET) endo-wise as shown by MALDI-Tof-MS, LC–UVD/MS, cationic dyeing and XPS analysis. Due to interfacial activation of the lipase in the presence of Triton X-100, a seven-fold increase of hydrolysis products released from 3PET was measured. In the presence of the plasticizer N,N-diethyl-2-phenylacetamide (DEPA), increased hydrolysis rates of semi-crystalline PET films and fabrics were measured both for lipase and cutinase. The formation of novel polar groups resulted in enhanced dye ability with additional increase in colour depth by 130% and 300% for cutinase and lipase, respectively, in the presence of plasticizer.  相似文献   

4.
Poly(ethylene terephthalate) (PET) can be functionalized and/or recycled via hydrolysis by microbial cutinases. The rate of hydrolysis is however low. Here, we tested whether hydrophobins (HFBs), small secreted fungal proteins containing eight positionally conserved cysteine residues, are able to enhance the rate of enzymatic hydrolysis of PET. Species of the fungal genus Trichoderma have the most proliferated arsenal of class II hydrophobin-encoding genes among fungi. To this end, we studied two novel class II HFBs (HFB4 and HFB7) of Trichoderma. HFB4 and HFB7, produced in Escherichia coli as fusions to the C terminus of glutathione S-transferase, exhibited subtle structural differences reflected in hydrophobicity plots that correlated with unequal hydrophobicity and hydrophily, respectively, of particular amino acid residues. Both proteins exhibited a dosage-dependent stimulation effect on PET hydrolysis by cutinase from Humicola insolens, with HFB4 displaying an adsorption isotherm-like behavior, whereas HFB7 was active only at very low concentrations and was inhibitory at higher concentrations. We conclude that class II HFBs can stimulate the activity of cutinases on PET, but individual HFBs can display different properties. The present findings suggest that hydrophobins can be used in the enzymatic hydrolysis of aromatic-aliphatic polyesters such as PET.  相似文献   

5.
Cutinases have shown potential for hydrolysis of the recalcitrant synthetic polymer polyethylene terephthalate (PET). We have shown previously that the rate of this hydrolysis can be enhanced by the addition of hydrophobins, small fungal proteins that can alter the physicochemical properties of surfaces. Here we have investigated whether the PET-hydrolyzing activity of a bacterial cutinase from Thermobifida cellulosilytica (Thc_Cut1) would be further enhanced by fusion to one of three Trichoderma hydrophobins, i.e., the class II hydrophobins HFB4 and HFB7 and the pseudo-class I hydrophobin HFB9b. The fusion enzymes exhibited decreased kcat values on soluble substrates (p-nitrophenyl acetate and p-nitrophenyl butyrate) and strongly decreased the hydrophilicity of glass but caused only small changes in the hydrophobicity of PET. When the enzyme was fused to HFB4 or HFB7, the hydrolysis of PET was enhanced >16-fold over the level with the free enzyme, while a mixture of the enzyme and the hydrophobins led only to a 4-fold increase at most. Fusion with the non-class II hydrophobin HFB9b did not increase the rate of hydrolysis over that of the enzyme-hydrophobin mixture, but HFB9b performed best when PET was preincubated with the hydrophobins before enzyme treatment. The pattern of hydrolysis by the fusion enzymes differed from that of Thc_Cut1 as the concentration of the product mono(2-hydroxyethyl) terephthalate relative to that of the main product, terephthalic acid, increased. Small-angle X-ray scattering (SAXS) analysis revealed an increased scattering contrast of the fusion proteins over that of the free proteins, suggesting a change in conformation or enhanced protein aggregation. Our data show that the level of hydrolysis of PET by cutinase can be significantly increased by fusion to hydrophobins. The data further suggest that this likely involves binding of the hydrophobins to the cutinase and changes in the conformation of its active center.  相似文献   

6.
The paper describes the purification, biochemical characterization, sequence determination, and classification of a novel thermophilic hydrolase from Thermobifida fusca (TfH) which is highly active in hydrolyzing aliphatic-aromatic copolyesters. The secretion of the extracellular enzyme is induced by the presence of aliphatic-aromatic copolyesters but also by adding several other esters to the medium. The hydrophobic enzyme could be purified applying a combination of (NH(4))SO(4)-precipitation, cation-exchange chromatography, and hydrophobic interaction chromatography. The 28 kDa enzyme exhibits a temperature maximum of activity between 65 and 70 degrees C and a pH maximum between pH 6 and 7 depending on the ion strength of the solution. According to the amino sequence determination, the enzyme consists of 261 amino acids and was classified as a serine hydrolase showing high sequence similarity to a triacylglycerol lipase from Streptomyces albus G and triacylglycerol-aclyhydrolase from Streptomyces sp. M11. The comparison with other lipases and esterases revealed the TfH exhibits a catalytic behavior between a lipase and an esterase. Such enzymes often are named as cutinases. However, the results obtained here show, that classifying enzymes as cutinases seems to be generally questionable.  相似文献   

7.
The genes ACUT1, ACUT2, and ACUT3, encoding cutinases, were selected from the genomic DNA of Arxula adeninivorans LS3. The alignment of the amino acid sequences of these cutinases with those of other cutinases or cutinase-like enzymes from different fungi showed that they all had a catalytic S-D-H triad with a conserved G-Y-S-Q-G domain. All three genes were overexpressed in A. adeninivorans using the strong constitutive TEF1 promoter. Recombinant 6× His (6h)-tagged cutinase 1 protein (p) from A. adeninivorans LS3 (Acut1-6hp), Acut2-6hp, and Acut3-6hp were produced and purified by immobilized-metal ion affinity chromatography and biochemically characterized using p-nitrophenyl butyrate as the substrate for standard activity tests. All three enzymes from A. adeninivorans were active from pH 4.5 to 6.5 and from 20 to 30°C. They were shown to be unstable under optimal reaction conditions but could be stabilized using organic solvents, such as polyethylene glycol 200 (PEG 200), isopropanol, ethanol, or acetone. PEG 200 (50%, vol/vol) was found to be the best stabilizing agent for all of the cutinases, and acetone greatly increased the half-life and enzyme activity (up to 300% for Acut3-6hp). The substrate spectra for Acut1-6hp, Acut2-6hp, and Acut3-6hp were quite similar, with the highest activity being for short-chain fatty acid esters of p-nitrophenol and glycerol. Additionally, they were found to have polycaprolactone degradation activity and cutinolytic activity against cutin from apple peel. The activity was compared with that of the 6× His-tagged cutinase from Fusarium solani f. sp. pisi (FsCut-6hp), also expressed in A. adeninivorans, as a positive control. A fed-batch cultivation of the best Acut2-6hp-producing strain, A. adeninivorans G1212/YRC102-ACUT2-6H, was performed and showed that very high activities of 1,064 U ml−1 could be achieved even with a nonoptimized cultivation procedure.  相似文献   

8.
Cutinase from pollen grains of Tropaeolum majus was purified by Sephadex G-100 gel filtration, QAE-Sephadex chromatography, and isoelectric focusing. The purified enzyme was homogeneous as judged by polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. The molecular weight of the enzyme was estimated to be 40,000 by both Sephadex G-100 gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This cutinase was found to be a glycoprotein containing about 7% carbohydrate and the isoelectric point of this enzyme was 5.45. It catalyzed hydrolysis of p-nitrophenyl esters of C2 to C18 fatty acids with similar Km and V. The purified cutinase showed an optimum pH of 6.8 with cutin as the substrate, whereas with p-nitrophenyl esters of fatty acids the optimum pH was 8.0. This enzyme did not show any metal ion requirement. Unlike the previously studied fungal cutinases, the present pollen enzyme was strongly inhibited by thiol-directed reagents such as N-ethylmaleimide and p-hydroxymercuribenzoate whereas it was totally insensitive to the active serine-directed reagent, diisopropylfluorophosphate. The purified pollen cutinase showed preference for primary alcohol esters, but it did not catalyze hydrolysis of tripalmitoyl or trioleyl glycerol at significant rates. The properties of the pollen enzyme are, in general, in sharp contrast to those of the fungal cutinase, and the present results strongly suggest that the pollen enzyme belongs to a new class of cutinases. Another esterase which preferentially hydrolyzed p-nitrophenyl acetate was also found in the extracellular fluid. This enzyme, separated from cutinase, showed a pI of 5.6 and it was sensitive to diisopropylfluorophosphate, but not to SH-directed reagents.  相似文献   

9.
Fusarium roseum culmorum, grown on apple cutin as the sole source of carbon, was shown to produce a cutin depolymerizing enzyme. From the extracellular fluid of these F. roseum cultures, a cutinase and a nonspecific esterase were isolated utilizing Sephadex G-100, QAE-Sephadex, and SP-Sephadex chromatography. The homogeneity of the cutinase was verified by polyacrylamide disc gel electrophoresis. The molecular weight of the cutinase was estimated to be 24,300 by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Electrophoretic mobility of this enzyme was between that of Cutinases I and II from Fusarium solani pisi. The F. roseum cutinase hydrolyzed p-nitrophenyl butyrate and cutin, but not p-nitrophenyl palmitate, while the nonspecific esterase hydrolyzed the long-chain esters. Amino acid composition of F. roseum cutinase was found to be similar to that of F. solani pisi Cutinase I except for differences in the number of serine, valine, and cysteine residues. The time-course, protein concentration dependence, substrate concentration dependence, and pH optimum (10.0 for cutin hydrolysis) of the F. roseum cutinase was similar to the cutinases from F. solani pisi. The F. roseum cutinase was inhibited by diisopropylfluorophosphate and paraoxon, and the [3H]diisopropylphosphate group was covalently attached to the enzyme upon treatment with tritiated diisopropylfluorophosphate. Therefore, it is concluded that catalysis by cutinase involves an “active serine.” Immunochemical studies with a rabbit antibody prepared against F. solani pisi Cutinase I demonstrated that Cutinase II from this organism was immunologically very similar to, but not identical to, Cutinase I. On the other hand, the cutinase from F. roseum was immunologically quite different from the cutinases isolated from F. solani pisi in that it did not cross-react with anticutinase I. However, all three cutinases were virtually identical in their sensitivity to inhibition by anticutinase I, and all three enzymes were virtually completely inhibited by the anticutinase I.  相似文献   

10.
The interaction of lipolytic enzymes with anionic surfactants is of great interest with respect to industrially produced detergents. Here, we report the interaction of cutinase from the thermophilic fungus Humicola insolens with the anionic surfactant SDS, and show the enzyme specifically binds a single SDS molecule under nondenaturing concentrations. Protein interaction with SDS was investigated by NMR, ITC and molecular dynamics simulations. The NMR resonances of the protein were assigned, with large stretches of the protein molecule not showing any detectable resonances. SDS is shown to specifically interact with the loops surrounding the catalytic triad with medium affinity (Ka ≈ 105 M−1). The mode of binding is closely similar to that seen previously for binding of amphiphilic molecules and substrate analogues to cutinases, and hence SDS acts as a substrate mimic. In addition, the structure of the enzyme has been solved by X-ray crystallography in its apo form and after cocrystallization with diethyl p-nitrophenyl phosphate (DNPP) leading to a complex with monoethylphosphate (MEP) esterified to the catalytically active serine. The enzyme has the same fold as reported for other cutinases but, unexpectedly, esterification of the active site serine is accompanied by the ethylation of the active site histidine which flips out from its usual position in the triad.  相似文献   

11.
Cutinase, which exists in both fungi and bacteria, catalyzes the cleavage of the ester bonds of cutin. Fungal cutinases have been extensively studied, however, reports on bacterial cutinases have been limited due to the lack of knowledge concerning the identity of their open reading frames. In the present study, the cutinase from Thermobifida fusca was induced by cutin and purified to homogeneity by following p-nitrophenyl butyrate hydrolyzing activity. Peptide mass fingerprinting analysis of the wild-type enzyme matched two proteins, Tfu_0883 and Tfu_0882, which are 93% identical in sequence. Both proteins were cloned and overexpressed in their mature form. Recombinant Tfu_0883 and Tfu_0882 display very similar enzymatic properties and were confirmed to be cutinases by their capability to hydrolyze the ester bonds of cutin. Comparative characterization of Fusarium solani pisi and T. fusca cutinases indicated that they have similar substrate specificity and catalytic properties except that the T. fusca enzymes are thermally more stable. Homology modeling revealed that T. fusca cutinases adopt an alpha/beta-hydrolase fold that exhibits both similarities and variations from the fungal cutinase structure. A serine hydrolase catalytic mechanism involving a Ser(170)-His(248)-Asp(216) (Tfu_0883 numbering) catalytic triad was supported by active site-directed inhibition studies and mutational analyses. This is the first report of cutinase encoding genes from bacterial sources.  相似文献   

12.
The gene encoding a cutinase homolog, LC-cutinase, was cloned from a fosmid library of a leaf-branch compost metagenome by functional screening using tributyrin agar plates. LC-cutinase shows the highest amino acid sequence identity of 59.7% to Thermomonospora curvata lipase. It also shows the 57.4% identity to Thermobifida fusca cutinase. When LC-cutinase without a putative signal peptide was secreted to the periplasm of Escherichia coli cells with the assistance of the pelB leader sequence, more than 50% of the recombinant protein, termed LC-cutinase*, was excreted into the extracellular medium. It was purified and characterized. LC-cutinase* hydrolyzed various fatty acid monoesters with acyl chain lengths of 2 to 18, with a preference for short-chain substrates (C(4) substrate at most) most optimally at pH 8.5 and 50°C, but could not hydrolyze olive oil. It lost activity with half-lives of 40 min at 70°C and 7 min at 80°C. LC-cutinase* had an ability to degrade poly(ε-caprolactone) and polyethylene terephthalate (PET). The specific PET-degrading activity of LC-cutinase* was determined to be 12 mg/h/mg of enzyme (2.7 mg/h/μkat of pNP-butyrate-degrading activity) at pH 8.0 and 50°C. This activity is higher than those of the bacterial and fungal cutinases reported thus far, suggesting that LC-cutinase* not only serves as a good model for understanding the molecular mechanism of PET-degrading enzyme but also is potentially applicable for surface modification and degradation of PET.  相似文献   

13.
Poly(ethylene terephthalate) (PET) is one of the most consumed plastics in the world. The development of efficient technologies for its depolymerization for monomers reuse is highly encouraged, since current recycling rates are still very low. In this study, 16 commercial lipases and cutinases were evaluated for their abilities to catalyze the hydrolysis of two PET samples. Humicola insolens cutinase showed the best performance and was then used in reactions on other PET sources, solely or in combination with the efficient mono(hydroxyethyl terephthalate)-converting lipase from Candida antarctica. Synergy degrees of the final titers of up to 2.2 (i.e., more than double of the concentration when both enzymes were used, as compared to their use alone) were found, with increased terephthalic acid formation rates, reaching a maximum of 59,989 µmol/L (9.36 g/L). These findings open up new possibilities for the conversion of post-consumer PET packages into their minimal monomers, which can be used as drop in at existing industrial facilities.  相似文献   

14.
The cell wall of M. tuberculosis is central to its success as a pathogen. Mycolic acids are key components of this cell wall. The genes involved in joining the α and mero mycolates are located in a cluster, beginning with Rv3799c and extending at least until Rv3804c. The role of each enzyme encoded by these five genes is fairly well understood, except for Rv3802c. Rv3802 is one of seven putative cutinases encoded by the genome of M. tuberculosis. In phytopathogens, cutinases hydrolyze the waxy layer of plants, cutin. In a strictly mammalian pathogen, such as M. tuberculosis, it is likely that these proteins perform a different function. Of the seven, we chose to focus on Rv3802c because of its location in a mycolic acid synthesis gene cluster, its putative essentiality, its ubiquitous presence in actinomycetes, and its conservation in the minimal genome of Mycobacterium leprae. We expressed Rv3802 in Escherichia coli and purified the enzymatically active form. We probed its activities and inhibitors characterizing those relevant to its possible role in mycolic acid biosynthesis. In addition to its reported phospholipase A activity, Rv3802 has significant thioesterase activity, and it is inhibited by tetrahydrolipstatin (THL). THL is a described anti-tuberculous compound with an unknown mechanism, but it reportedly targets cell wall synthesis. Taken together, these data circumstantially support a role for Rv3802 in mycolic acid synthesis and, as the cell wall is integral to M. tuberculosis pathogenesis, identification of a novel cell wall enzyme and its inhibition has therapeutic and diagnostic implications.  相似文献   

15.
Cutinases are esterases that release fatty acids from the apoplastic layer in plants. As they accept bulky and hydrophobic substrates, cutinases could be used in many applications, ranging from valorization of bark-rich side streams to plastic recycling. Advancement of these applications, however, requires deeper knowledge of cutinases’ biodiversity and structure–function relationships. Here, we mined over 3000 members from carbohydrate esterase family 5 for putative cutinases and condensed it to 151 genes from known or putative lignocellulose-targeting organisms. The 151 genes were subjected to a phylogenetic analysis, which showed that cutinases with available crystal structures were phylogenetically closely related. We then selected nine phylogenic diverse cutinases for recombinant production and characterized their kinetic activity against para-nitrophenol substrates esterified with consecutively longer alkyl chains (pNP-C2 to C16). Each investigated cutinase had a unique activity fingerprint against the tested pNP substrates. The five enzymes with the highest activity on pNP-C12 and C16, indicative of activity on bulky hydrophobic compounds, were selected for in-depth kinetic and structure–function analysis. All five enzymes showed a decrease in kcat values with increasing substrate chain length, whereas KM values and binding energies (calculated from in silico docking analysis) improved. Two cutinases from Fusarium solani and Cryptococcus sp. exhibited outstandingly low KM values, resulting in high catalytic efficiencies toward pNP-C16. Docking analysis suggested that different clades of the phylogenetic tree may harbor enzymes with different modes of substrate interaction, involving a solvent-exposed catalytic triad, a lipase-like lid, or a clamshell-like active site possibly formed by flexible loops.  相似文献   

16.
A cutinase gene (ScCut1) was amplified by PCR from the genomic DNA of the ascomycetous plant pathogen Sirococcous conigenus VTT D-04989 using degenerate primers designed on the basis of conserved segments of known cutinases and cutinase-like enzymes. No introns or N- or O-glycosylation sites could be detected by analysis of the ScCut1 gene sequence. The alignment of ScCut1 with other fungal cutinases indicated that ScCut1 contained the conserved motif G-Y-S-Q-G surrounding the active site serine as well as the aspartic acid and histidine residues of the cutinase active site. The gene was expressed in Pichia pastoris, and the recombinantly produced ScCut1 enzyme was purified to homogeneity by immobilized metal affinity chromatography exploiting a C-terminal His-tag translationally fused to the protein. The purified ScCut1 exhibited activity at acidic pH. The K m and V max values determined for pNP-butyrate esterase activity at pH 4.5 were 1.7 mM and 740 nkat mg?1, respectively. Maximal activities were determined at between pH 4.7 and 5.2 and at between pH 4.1 and 4.6 with pNP-butyrate and tritiated cutin as the substrates, respectively. With both substrates, the enzyme was active over a broad pH range (between pH 3.0 and 7.5). Activity could still be detected at pH 3.0 both with tritiated cutin and with p-nitrophenyl butyrate (relative activity of 25 %) as the substrates. ScCut1 showed activity towards shorter (C2 to C3) fatty acid esters of p-nitrophenol than towards longer ones. Circular dichroism analysis suggested that the denaturation of ScCut1 by heating the protein sample to 80 °C was to a great extent reversible.  相似文献   

17.
Cutinases belong to the α/β-hydrolase fold family of enzymes and degrade cutin and various esters, including triglycerides, phospholipids and galactolipids. Cutinases are able to degrade aggregated and soluble substrates because, in contrast with true lipases, they do not have a lid covering their catalytic machinery. We report here the structure of a cutinase from the fungus Trichoderma reesei (Tr) in native and inhibitor-bound conformations, along with its enzymatic characterization. A rare characteristic of Tr cutinase is its optimal activity at acidic pH. Furthermore, Tr cutinase, in contrast with classical cutinases, possesses a lid covering its active site and requires the presence of detergents for activity. In addition to the presence of the lid, the core of the Tr enzyme is very similar to other cutinase cores, with a central five-stranded β-sheet covered by helices on either side. The catalytic residues form a catalytic triad involving Ser164, His229 and Asp216 that is covered by the two N-terminal helices, which form the lid. This lid opens in the presence of surfactants, such as β-octylglucoside, and uncovers the catalytic crevice, allowing a C11Y4 phosphonate inhibitor to bind to the catalytic serine. Taken together, these results reveal Tr cutinase to be a member of a new group of lipolytic enzymes resembling cutinases but with kinetic and structural features of true lipases and a heightened specificity for long-chain triglycerides.  相似文献   

18.
The hydrolysis of p-nitrophenyl-β-1,4-cellobioside (pNP-G2) by the catalytic domain of the retaining-family 5-2 endocellulase Cel5A from Thermobifida fusca (Cel5Acd) was studied. The dominant reaction pathway involves hydrolysis of the aglyconic bond, producing cellobiose (G2) and a ‘reporter’ species p-nitrophenol (pNP), which was monitored spectrophotometrically to track the reaction. We also detected the production of cellotriose (G3) and p-nitrophenyl-glucoside (pNP-G1), confirming the presence of a competing transglycosylation pathway. We use a mechanistic model of hydrolysis and transglycosylation to derive an expression for the rate of pNP-formation as a function of enzyme concentration, substrate concentration, and several lumped kinetics parameters. The derivation assumes that the quasi-steady-state assumption (QSSA) applies for three intermediate species in the mechanism; we determine conditions under which this assumption is rigorously justified. We integrate the rate expression and compare its integral form to pNP-versus-time data collected for a range of enzyme and substrate concentrations. The integral comparison gives a stringent test of the mechanistic model, and it serves to quantify the lumped kinetics parameters with good statistical precision, particularly a previously unidentified parameter that determines the selectivity of hydrolysis versus transglycosylation. The integrated rate expression accounts well for pNP-versus-time data under all circumstances we have investigated.  相似文献   

19.
Recently, the new trend in the second-generation ethanol industry is to use mild pretreatments, in order to reduce costs and to keep higher content of hemicellulose in the biomass. Nevertheless, a high enzyme dosage is still required in the conversion of (hemi)cellulose. The interaction between cellulases and xylanases seems to be an effective alternative to reduce enzyme loading in the saccharification process. At first, to evaluate the synergism of xylanases on bagasse degradation, we have produced two xylanases from glycoside hydrolase family 10 (GH10) and three xylanases from glycoside hydrolase family 11 (GH11), from two thermophilic organisms, Thermobifida fusca and Clostridium thermocellum, and one mesophilic organism, Streptomyces lividans. Peracetic acid (PAA) pretreated bagasse was used as substrate. The combination of XynZ-C (GH10, from C. thermocellum), and XlnB (GH11, from S. lividans) presented the highest degree of synergy after 6 h (3.62). However, the combination of XynZ-C and Xyn11A (GH11, from T. fusca) resulted in the highest total yield of reducing sugars. To evaluate the synergism between xylanases and cellulases, commercial cellulase preparation from Trichoderma reesei was combined with the selected xylanases, XynZ-C and Xyn11A. About 2-fold increase was observed in the concentration of reducing sugars, when both xylanases, XynZ-C and Xyn11A, were added together with T. reesei cellulases in the reaction mixture.  相似文献   

20.
李秀  杨海涛  王泽方 《微生物学报》2019,59(12):2251-2262
聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)因其良好的耐用性和可塑性,已在世界范围内的工业领域和日常生活中得到广泛应用。目前自然环境中大量PET使用废弃物的积累和迁移给全球生态系统带来了严重负担,因此PET的降解问题已成为全球性的热点问题。微生物酶降解法目前被认为是一种理想绿色PET降解方法,有希望应用于大规模降解PET废弃物降解处理。传统的PET降解酶主要包括脂肪酶、酯酶和角质酶等,但这些酶的PET降解活性相对不高。近期科学家从Ideonella sakaiensis细菌中分离了一种新型水解酶PETase,能够特异性高效降解PET。本文从结构生物学角度对多种PET降解酶进行梳理,重点总结了新近发现的PETase催化机制,为发展改造更有效的PET降解酶提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号