首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss., is a severe foliar disease of common wheat (Triticum aestivum L.) worldwide. Use of adult-plant resistance (APR) is an efficient approach to provide long-term protection of crops from the disease. The German spring wheat cultivar Naxos showed a high level of APR to stripe rust in the field. To identify the APR genes in this cultivar, a mapping population of 166 recombinant inbred lines (RILs) was developed from a cross between Naxos and Shanghai 3/Catbird (SHA3/CBRD), a moderately susceptible line developed by CIMMYT. The RILs were evaluated for maximum disease severity (MDS) in Sichuan and Gansu in the 2009-2010 and 2010-2011 cropping seasons. Composite interval mapping (CIM) identified four QTL, QYr.caas-1BL.1RS, QYr.caas-1DS, QYr.caas-5BL.3 and QYr.caas-7BL.1, conferring stable resistance to stripe rust across all environments, each explaining 1.9-27.6, 2.1-5.8, 2.5-7.8 and 3.7-9.1?% of the phenotypic variance, respectively. QYr.caas-1DS flanked by molecular markers XUgwm353-Xgdm33b was likely a new QTL for APR to stripe rust. Because the interval between flanking markers for each QTL was less than 6.5?cM, these QTL and their closely linked markers are potentially useful for improving resistance to stripe rust in wheat breeding.  相似文献   

2.
Fusarium head blight (FHB) is a destructive wheat disease of global importance. Resistance breeding depends heavily on the Fhb1 gene. The CIMMYT line Shanghai-3/Catbird (SHA3/CBRD) is a promising source without this gene. A recombinant inbred line (RIL) population from the cross of SHA3/CBRD with the German spring wheat cv. Naxos was evaluated for FHB resistance and related traits in field trials using spray and spawn inoculation in Norway and point inoculation in China. After spray and spawn inoculation, FHB severities were negatively correlated with both anther extrusion (AE) and plant height (PH). The QTL analysis showed that the Rht-B1b dwarfing allele co-localized with a QTL for low AE and increased susceptibility after spawn and spray inoculation. In general, SHA3/CBRD contributed most of the favorable alleles for resistance to severity after spray and spawn inoculation, while Naxos contributed more favorable alleles for reduction in FDK and DON content and resistance to severity after point inoculation. SHA3/CBRD contributed a major resistance QTL close to the centromere on 2DLc affecting FHB severity and DON after all inoculation methods. This QTL was also associated with AE and PH, with high AE and tall alleles contributed by SHA3/CBRD. Several QTL for AE and PH were detected, and low AE or reduced PH was always associated with increased susceptibility after spawn and spray inoculation. Most of the other minor FHB resistance QTL from SHA3/CBRD were associated with AE or PH, while the QTL from Naxos were mostly not. After point inoculation, no other QTL for FHB traits was associated with AE or PH, except the 2DLc QTL which was common across all inoculation methods. Marker-assisted selection based on the 2DLc QTL from SHA3/CBRD combined with phenotypic selection for AE is recommended for resistance breeding based on this valuable source of resistance.  相似文献   

3.

Key message

Quantitative trait loci conferring adult plant resistance to Ug99 stem rust in Thatcher wheat display complementary gene action suggesting multiple quantitative trait loci are needed for effective resistance.

Abstract

Adult plant resistance (APR) in wheat (Triticum aestivum L.) to stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is desirable because this resistance can be Pgt race non-specific. Resistance derived from cultivar Thatcher can confer high levels of APR to the virulent Pgt race TTKSK (Ug99) when combined with stem rust resistance gene Sr57 (Lr34). To identify the loci conferring APR in Thatcher, we evaluated 160 RILs derived from Thatcher crossed to susceptible cultivar McNeal for field stem rust reaction in Kenya for two seasons and in St. Paul for one season. All RILs and parents were susceptible as seedlings to race TTKSK. However, adult plant stem rust severities in Kenya varied from 5 to 80 %. Composite interval mapping identified four quantitative trait loci (QTL). Three QTL were inherited from Thatcher and one, Sr57, was inherited from McNeal. The markers closest to the QTL peaks were used in an ANOVA to determine the additive and epistatic effects. A QTL on 3BS was detected in all three environments and explained 27–35 % of the variation. The peak of this QTL was at the same location as the Sr12 seedling resistance gene effective to race SCCSC. Epistatic interactions were significant between Sr12 and QTL on chromosome arms 1AL and 2BS. Though Sr12 cosegregated with the largest effect QTL, lines with Sr12 were not always resistant. The data suggest that Sr12 or a linked gene, though not effective to race TTKSK alone, confers APR when combined with other resistance loci.  相似文献   

4.
Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat   总被引:2,自引:0,他引:2  
The common wheat cultivar Parula possesses a high level of slow rusting, adult plant resistance (APR) to all three rust diseases of wheat. Previous mapping studies using an Avocet-YrA/Parula recombinant inbred line (RIL) population showed that APR to leaf rust (Puccinia triticina) in Parula is governed by at least three independent slow rusting resistance genes: Lr34 on 7DS, Lr46 on 1BL, and a previously unknown gene on 7BL. The use of field rust reaction and flanking markers identified two F6 RILs, Arula1 and Arula2, from the above population that lacked Lr34 and Lr46 but carried the leaf rust resistance gene in 7BL, hereby designated Lr68. Arula1 and Arula2 were crossed with Apav, a highly susceptible line from the cross Avocet-YrA/Pavon 76, and 396 F4-derived F5 RILs were developed for mapping Lr68. The RILs were phenotyped for leaf rust resistance for over 2 years in Ciudad Obregon, Mexico, with a mixture of P. triticina races MBJ/SP and MCJ/SP. Close genetic linkages with several DNA markers on 7BL were established using 367 RILs; Psy1-1 and gwm146 flanked Lr68 and were estimated at 0.5 and 0.6 cM, respectively. The relationship between Lr68 and the race-specific seedling resistance gene Lr14b, located in the same region and present in Parula, Arula1 and Arula2, was investigated by evaluating the RILs with Lr14b-avirulent P. triticina race TCT/QB in the greenhouse. Although Lr14b and Lr68 homozygous recombinants in repulsion were not identified in RILs, γ-irradiation-induced deletion stocks that lacked Lr68 but possessed Lr14b showed that Lr68 and Lr14b are different loci. Flanking DNA markers that are tightly linked to Lr68 in a wide array of genotypes can be utilized for selection of APR to leaf rust.  相似文献   

5.
Leaf rust (LR) and yellow rust (YR), caused by Puccinia triticina and Puccinia striiformis f. sp. tritici, respectively, are important diseases of wheat. Quaiu 3, a common wheat line developed at the International Maize and Wheat Improvement Center (CIMMYT), is immune to YR in Mexico despite seedling susceptibility to predominant races. Quaiu 3 also shows immunity to LR in field trials and is known to possess the race-specific gene Lr42. A mapping population of 182 recombinant inbred lines (RILs) was developed by crossing Quaiu 3 with susceptible Avocet-YrA and phenotyped with LR and YR in field trials for 2 years in Mexico. Quantitative trait loci (QTL) associated with YR and LR resistance in the RILs were identified using Diversity Arrays Technology and simple sequence repeat markers. A large-effect QTL on the long arm of chromosome 2D explained 49–54 % of the phenotypic variation in Quaiu 3 and was designated as Yr54. Two additional loci on 1BL and 3BS explained 8–17 % of the phenotypic variation for YR and coincided with previously characterized adult plant resistance (APR) genes Lr46/Yr29 and Sr2/Yr30, respectively. QTL on 1DS and 1BL corresponding to Lr42 and Lr46/Yr29, respectively, contributed 60–71 % of the variation for LR resistance. A locus on 3D associated with APR to both diseases explained up to 7 % of the phenotypic variance. Additional Avocet-YrA-derived minor QTL were also detected for YR on chromosomes 1A, 3D, 4A, and 6A. Yr54 is a newly characterized APR gene which can be combined with other genes by using closely linked molecular markers.  相似文献   

6.
Powdery mildew, caused by Blumeria graminis f.sp. tritici, is a major wheat disease in maritime and temperate climates. Breeding for race-non-specific or partial resistance is a cost-effective and environmentally friendly disease control strategy. The German spring wheat cultivar Naxos has proven to be a good source for partial resistance to powdery mildew. The objectives of the present study were to map the resistance loci in Naxos with use of high-density SNP markers in the Shanghai3/Catbird x Naxos inbred line population and validate the results in a different genetic background; Soru#1 x Naxos. Both populations were genotyped with the Illumina iSelect 90K wheat chip, and integrated linkage maps developed by inclusion of previously genotyped SSR and DArT markers. With the new linkage maps, we detected a total of 12 QTL for powdery mildew resistance in Shanghai3/Catbird x Naxos, of which eight were derived from Naxos. Previously reported QTL on chromosome arms 1AS and 2BL were more precisely mapped and the SNP markers enabled discovery of new QTL on 1AL, 2AL, 5AS and 5AL. In the Soru#1 x Naxos population, four QTL for powdery mildew resistance were detected, of which three had resistance from Naxos. This mapping verified the 1AS and 2AL QTL detected in Shanghai3/Catbird x Naxos, and identified a new QTL from Naxos on 2BL. In conclusion, the improved linkage maps with SNP markers enabled discovery of new resistance QTL and more precise mapping of previously known QTL. Moreover, the results were validated in an independent genetic background.  相似文献   

7.
Powdery mildew is one of the most important wheat diseases in temperate regions of the world. Resistance breeding is considered to be an economical and environmentally benign way to control this disease. The German spring wheat cv. 'Naxos' exhibits high levels of partial and race non-specific resistance to powdery mildew in the field and is a valuable source in resistance breeding. The main objective of the present study was to map the genetic factors behind the resistance in Naxos, based on a population of recombinant inbred lines (RIL) from a cross with the susceptible CIMMYT breeding line SHA3/CBRD. Powdery mildew severity was evaluated in six field trials in Norway and four field trials in China. The major quantitative trait locus (QTL) with resistance from Naxos was detected close to the Pm3 locus on 1AS in all environments, and explained up to 35% of the phenotypic variation. Naxos was shown to carry another major QTL on 2DL and minor ones on 2BL and 7DS. QTL with resistance from SHA3/CBRD were detected on 1RS, 2DLc, 6BL and 7AL. The QTL on the 1B/1R translocation showed highly variable effects across environments corresponding to known virulence differences against Pm8. SHA3/CBRD was shown to possess the Pm3 haplotype on 1AS, but none of the known Pm3a-g alleles. The RIL population did not provide any evidence to suggest that the Pm3 allele of SHA3/CBRD acted as a suppressor of Pm8.  相似文献   

8.
Genetic resistance is the most effective approach to managing wheat leaf rust. The aim of this study was to characterize seedling and adult plant leaf rust resistance of a world wheat collection. Using controlled inoculation with ten races of Puccinia triticina, 14 seedling resistance genes were determined or postulated to be present in the collection. Lr1, Lr3, Lr10 and Lr20 were the most prevalent genes around the world while Lr9, Lr14b, Lr3ka and/or Lr30 and Lr26 were rare. To confirm some gene postulations, the collection was screened with gene-specific molecular markers for Lr1, Lr10, Lr21 and Lr34. Although possessing the Lr1 and/or Lr10 gene-specific marker, 51 accessions showed unexpected high infection types to P. triticina race BBBD. The collection was tested in the field, where rust resistance ranged from nearly immune or highly resistant with severity of 1 % and resistant host response to highly susceptible with severity of 84 % and susceptible host response. The majority of the accessions possessing the adult plant resistance (APR) gene Lr34 had a maximum rust severity of 0–35 %, similar to or better than accession RL6058, a Thatcher-Lr34 near-isogenic line. Many accessions displayed an immune response or a high level of resistance under field conditions, likely as a result of synergy between APR genes or between APR and seedling resistance genes. However, accessions with three or more seedling resistance genes had an overall lower field severity than those with two or fewer. Immune or highly resistant accessions are potential sources for improvement of leaf rust resistance. In addition, some lines were postulated to have known but unidentified genes/alleles or novel genes, also constituting potentially important sources of novel resistance.  相似文献   

9.

Key message

New leaf rust adult plant resistance (APR) QTL QLr.cim - 6BL was mapped and confirmed the known pleotropic APR gene Lr46 effect on leaf rust in durum wheat line Bairds.

Abstract

CIMMYT-derived durum wheat line Bairds displays an adequate level of adult plant resistance (APR) to leaf rust in Mexican field environments. A recombinant inbred line (RIL) population developed from a cross of Bairds with susceptible parent Atred#1 was phenotyped for leaf rust response at Ciudad Obregon, Mexico, during 2013, 2014, 2015 and 2016 under artificially created epidemics of Puccinia triticina (Pt) race BBG/BP. The RIL population and its parents were genotyped with the 50 K diversity arrays technology (DArT) sequence system and simple sequence repeat (SSR) markers. A genetic map comprising 1150 markers was used to map the resistance loci. Four significant quantitative trait loci (QTLs) were detected on chromosomes 1BL, 2BC (centromere region), 5BL and 6BL. These QTLs, named Lr46, QLr.cim-2BC, QLr.cim-5BL and QLr.cim-6BL, respectively, explained 13.5–60.8%, 9.0–14.3%, 2.8–13.9%, and 11.6–29.4%, respectively, of leaf rust severity variation by the inclusive composite interval mapping method. All of these resistance loci were contributed by the resistant parent Bairds, except for QLr.cim-2BC, which came from susceptible parent Atred#1. Among these, the QTL on chromosome 1BL was the known pleiotropic APR gene Lr46, whereas QLr.cim-6BL, a consistently detected locus, should be a new leaf rust resistance locus in durum wheat. The mean leaf rust severity of RILs carrying all four QTLs ranged from 8.0 to 17.5%, whereas it ranged from 10.9 to 38.5% for three QTLs (Lr46 + 5BL + 6BL) derived from the resistant parent Bairds. Two RILs with four QTLs combinations can be used as sources of complex APR in durum wheat breeding.
  相似文献   

10.
The challenge posed by rapidly changing wheat rust pathogens, both in virulence and in environmental adaptation, calls for the development and application of new techniques to accelerate the process of breeding for durable resistance. To expand the resistance gene pool available for germplasm improvement, a panel of 159 landraces plus old cultivars was evaluated for seedling and adult plant resistance (APR) to over 35 Australian pathotypes of Puccinia triticina, Puccinia graminis f. sp. tritici, and Puccinia striiformis f. sp. tritici. Known seedling resistance (SR) genes for leaf rust (Lr2a, Lr3a, Lr13, Lr23, Lr16, and Lr20), stem rust (Sr12, Sr13, Sr23, Sr30, and Sr36), and stripe rust (Yr3, Yr4, Yr5, Yr9, Yr10, Yr17, and Yr27) were postulated. The APR genes identified via field assessments and marker analyses included the pleiotropic genes (Lr34/Yr18/Sr57, Lr46/Yr29/Sr58, Lr67/Yr46/Sr55, and Sr2/Lr27/Yr30), Lr68, Lr74, and uncharacterized APR. A genome-wide association analysis using linear mixed models detected 79 single nucleotide polymorphism (SNP) markers significantly associated with rust resistance, which were mapped on chromosomes 1A, 1B, 1D, 2A, 2B, 3A, 3B, 3D, 4A, 5A, 5B, 6A, 6B, 6D, 7A, 7B and 7D. SNPs associated with multiple rust resistances probably indicate the presence of new pleiotropic or closely linked genes. SNPs were mapped on chromosome positions (1AL, 1DS, 2AL, 4AS, 5BS, 6DL, and 7AL) that have not been known to carry APR genes. This study revealed the presence of a range of possibly unidentified effective seedling and APRs among the landraces, which might represent new sources of rust resistance for the ongoing effort to develop improved wheat cultivars.  相似文献   

11.

Key message

A new gene for adult plant leaf rust resistance in wheat was mapped to chromosome 3BL. This gene was designated as Lr77.

Abstract

‘Santa Fe’ is a hard red winter cultivar that has had long-lasting resistance to the leaf rust fungus, Puccinia triticina. The objective of this study was to determine the chromosome location of the adult plant leaf rust resistance in Santa Fe wheat. A partial backcross line of ‘Thatcher’ (Tc) wheat with adult plant leaf rust resistance derived from Santa Fe was crossed with Thatcher to develop a Thatcher//Tc*2/Santa Fe F6 recombinant inbred line (RIL) population. The RIL population and parental lines were evaluated for segregation of leaf rust resistance in three field plot tests and in an adult plant greenhouse test. A genetic map of the RIL population was constructed using 90,000 single-nucleotide polymorphism (SNP) markers with the Illumina Infinium iSelect 90K wheat bead array. A significant quantitative trait locus for reduction of leaf rust severity in all four tests was found on chromosome 3BL that segregated as a single adult plant resistance gene. The RILs with the allele from the resistant parent for SNP marker IWB10344 had lower leaf rust severity and a moderately resistant to moderately susceptible response compared to the susceptible RILs and Thatcher. The gene derived from Santa Fe on chromosome 3BL was designated as Lr77. Kompetitive allele-specific polymerase chain reaction assay markers linked to Lr77 on 3BL should be useful for selection of wheat germplasm with this gene.
  相似文献   

12.
Wheat leaf rust (Puccinia triticina) is becoming a serious concern in Spanish wheat, especially on durum wheat where acreage has enormously increased. Host resistance is the preferred method of disease control, but the virulence spectrum of the leaf rust population in Spain is currently unknown. In order to deploy effective Lr genes, this study was conducted to characterize the virulence spectrum of leaf rust in Andalusia (Spain). Isolates were obtained from surveys of wheat fields across Andalusia from 1998 to 2000. From 56 isolates phenotyped, 35 pathotypes were identified. Virulence to Lr10, Lr11, Lr14a, Lr14b and Lr18 was high (>96%), while virulence to Lr9 and Lr24 were not found. None of the isolates collected from durum wheat were virulent to Lr1, Lr3, Lr3ka, Lr3bg, Lr15, Lr16 and Lr17, while many of the isolates collected on bread wheat showed virulence on these genes, indicating a certain specialization in the leaf rust infecting durum wheat. Population dynamics of current wheat leaf rust pathotypes in terms of mutation and migration are discussed.  相似文献   

13.

Key message

KU3198 is a common wheat accession that carries one novel leaf rust resistance (Lr) gene, Lr70 , and another Lr gene which is either novel, Lr52 or an allele of Lr52.

Abstract

Leaf rust, caused by Puccinia triticina Eriks. (Pt), is a broadly distributed and economically important disease of wheat. Deploying cultivars carrying effective leaf rust resistance (Lr) genes is a desirable method of disease control. KU3198 is a common wheat (Triticum aestivum L.) accession from the Kyoto collection that was highly resistant to Pt in Canada. An F2 population from the cross HY644/KU3198 showed segregation for two dominant Lr genes when tested with Pt race MBDS which was virulent on HY644. Multiple bulk segregant analysis (MBSA) was employed to find putative chromosome locations of these Lr genes using SSR markers that provided coverage of the genome. MBSA predicted that the Lr genes were located on chromosomes 5B and 5D. A doubled haploid population was generated from the cross of JBT05-714 (HY644*3/KU3198), a line carrying one of the Lr genes from KU3198, to Thatcher. This population segregated for a single Lr gene conferring resistance to Pt race MBDS, which was mapped to the terminal region of the short arm of chromosome 5B with SSR markers and given the temporary designation LrK1. One F3 family derived from the HY644/KU3198 F2 population that segregated only for the second Lr gene from KU3198 was identified. This family was treated as an F2-equivalent population and used for mapping the Lr gene, which was located to the terminal region of chromosome 5DS. As no other Lr gene has been mapped to 5DS, this gene is novel and has been designated as Lr70.  相似文献   

14.

Key message

We demonstrate that Lr67/Yr46 has pleiotropic effect on stem rust and powdery mildew resistance and is associated with leaf tip necrosis. Genes are designated as Sr55, Pm46 and Ltn3 , respectively.

Abstract

Wheat (Triticum aestivum) accession RL6077, known to carry the pleiotropic slow rusting leaf and yellow rust resistance genes Lr67/Yr46 in Thatcher background, displayed significantly lower stem rust (P. graminis tritici; Pgt) and powdery mildew (Blumeria graminis tritici; Bgt) severities in Kenya and in Norway, respectively, compared to its recurrent parent Thatcher. We investigated the resistance of RL6077 to stem rust and powdery mildew using Avocet × RL6077 F6 recombinant inbred lines (RILs) derived from two photoperiod-insensitive F3 families segregating for Lr67/Yr46. Greenhouse seedling tests were conducted with Mexican Pgt race RTR. Field evaluations were conducted under artificially initiated stem rust epidemics with Pgt races RTR and TTKST (Ug99 + Sr24) at Ciudad Obregon (Mexico) and Njoro (Kenya) during 2010–2011; and under natural powdery mildew epiphytotic in Norway at Ås and Hamar during 2011 and 2012. In Mexico, a mean reduction of 41 % on stem rust severity was obtained for RILs carrying Lr67/Yr46, compared to RILs that lacked the gene, whereas in Kenya the difference was smaller (16 %) but significant. In Norway, leaf tip necrosis was associated with Lr67/Yr46 and RILs carrying Lr67/Yr46 showed a 20 % reduction in mean powdery mildew severity at both sites across the 2 years of evaluation. Our study demonstrates that Lr67/Yr46 confers partial resistance to stem rust and powdery mildew and is associated with leaf tip necrosis. The corresponding pleiotropic, or tightly linked, genes, designated as Sr55, Pm46, and Ltn3, can be utilized to provide broad-spectrum durable disease resistance in wheat.  相似文献   

15.

Key message

Thirteen potentially new leaf rust resistance loci were identified in a Vavilov wheat diversity panel. We demonstrated the potential of allele stacking to strengthen resistance against this important pathogen.

Abstract

Leaf rust (LR) caused by Puccinia triticina is an important disease of wheat (Triticum aestivum L.), and the deployment of genetically resistant cultivars is the most viable strategy to minimise yield losses. In this study, we evaluated a diversity panel of 295 bread wheat accessions from the N. I. Vavilov Institute of Plant Genetic Resources (St Petersburg, Russia) for LR resistance and performed genome-wide association studies (GWAS) using 10,748 polymorphic DArT-seq markers. The diversity panel was evaluated at seedling and adult plant growth stages using three P. triticina pathotypes prevalent in Australia. GWAS was applied to 11 phenotypic data sets which identified a total of 52 significant marker–trait associations representing 31 quantitative trait loci (QTL). Among them, 29 QTL were associated with adult plant resistance (APR). Of the 31 QTL, 13 were considered potentially new loci, whereas 4 co-located with previously catalogued Lr genes and 14 aligned to regions reported in other GWAS and genomic prediction studies. One seedling LR resistance QTL located on chromosome 3A showed pronounced levels of linkage disequilibrium among markers (r 2 = 0.7), suggested a high allelic fixation. Subsequent haplotype analysis for this region found seven haplotype variants, of which two were strongly associated with LR resistance at seedling stage. Similarly, analysis of an APR QTL on chromosome 7B revealed 22 variants, of which 4 were associated with resistance at the adult plant stage. Furthermore, most of the tested lines in the diversity panel carried 10 or more combined resistance-associated marker alleles, highlighting the potential of allele stacking for long-lasting resistance.
  相似文献   

16.
Neijiang 977671 and 19 near-isogenic lines with known leaf rust resistance genes were inoculated with 12 pathotypes of Puccinia triticina for postulation of leaf rust resistance genes effective at the seedling stage. The reaction pattern of Neijiang 977671 differed from those of the lines with known leaf rust resistance genes used in the test, indicating that Neijiang 977671 may carry a new leaf rust resistance gene(s). With the objective of identifying and mapping the new gene for resistance to leaf rust, F1 and F2 plants, and F2:3 families, from Neijiang 977671 × Zhengzhou 5389 (susceptible) were inoculated with Chinese P. triticina pathotype FHNQ in the greenhouse. Results from the F2 and F2:3 populations indicated that a single dominant gene, temporarily designated LrNJ97, conferred resistance. In order to identify other possible genes in Neijiang 977671 other eight P. triticina pathotypes avirulent on Neijiang 977671 were used to inoculate 25 F2:3 families. The results showed that at least three leaf rust resistance genes were deduced in Neijiang 977671. Bulked segregant analysis was performed on equal amounts of genomic DNA from 20 resistant and 20 susceptible F2 plants. SSR markers polymorphic between the resistant and susceptible bulks were used to analyze the F2:3 families. LrNJ97 was linked to five SSR loci on chromosome 2BL. The two closest flanking SSR loci were Xwmc317 and Xbarc159 at genetic distances of 4.2 and 2.2 cM, respectively. At present two designated genes (Lr50 and Lr58) are located on chromosome 2BL. In the seedling tests, the reaction pattern of LrNJ97 was different from that of Lr50. Lr50 and Lr58 were derived from T. armeniacum and Ae. triuncialis, respectively, whereas according to the pedigree of Neijiang 977671 LrNJ97 is from common wheat. Although seeds of lines with Lr58 were not available, it was concluded that LrNJ97 is likely to be a new leaf rust resistance gene.  相似文献   

17.

Key message

This article covers detailed characterization and naming of QSr.sun - 5BL as Sr56 . Molecular markers linked with adult plant stem rust resistance gene Sr56 were identified and validated for marker-assisted selection.

Abstract

The identification of new sources of adult plant resistance (APR) and effective combinations of major and minor genes is well appreciated in breeding for durable rust resistance in wheat. A QTL, QSr.sun-5BL, contributed by winter wheat cultivar Arina providing 12–15 % reduction in stem rust severity, was reported in an Arina/Forno recombinant inbred line (RIL) population. Following the demonstration of monogenic segregation for APR in the Arina/Yitpi RIL population, the resistance locus was formally named Sr56. Saturation mapping of the Sr56 region using STS (from EST and DArT clones), SNP (9 K) and SSR markers from wheat chromosome survey sequences that were ordered based on synteny with Brachypodium distachyon genes in chromosome 1 resulted in the flanking of Sr56 by sun209 (SSR) and sun320 (STS) at 2.6 and 1.2 cM on the proximal and distal ends, respectively. Investigation of conservation of gene order between the Sr56 region in wheat and B. distachyon showed that the syntenic region defined by SSR marker interval sun209-sun215 corresponded to approximately 192 kb in B. distachyon, which contains five predicted genes. Conservation of gene order for the Sr56 region between wheat and Brachypodium, except for two inversions, provides a starting point for future map-based cloning of Sr56. The Arina/Forno RILs carrying both Sr56 and Sr57 exhibited low disease severity compared to those RILs carrying these genes singly. Markers linked with Sr56 would be useful for marker-assisted pyramiding of this gene with other major and APR genes for which closely linked markers are available.  相似文献   

18.
Leaf rust, caused by Puccinia triticina Eriks, is one of the most common and persistent wheat diseases in the US Great Plains. We report that the Lr34 gene was mapped in the center of a QTL for leaf rust reaction and explained 18–35% of the total phenotypic variation in disease severity of adult plants in a Jagger × 2174 population of recombinant inbred lines (RILs) field-tested for 3 years. The sequence of the complete Lr34 gene was determined for the susceptible Jagger allele and for the resistant 2174 allele. The two alleles had exactly the same sequence as the resistant allele reported previously in Chinese Spring at three polymorphic sites in intron 4, exon 11, and exon 12. A G/T polymorphism was found in exon 22, where a premature stop codon was found in the susceptible Jagger allele (Lr34E22s), confirming a previous report, due to a point mutation compared with the resistant 2174 allele (Lr34E22r). We have experimentally demonstrated a tight association between the point mutation at exon 22 of Lr34 and leaf rust susceptibility in a segregating biparental population. A PCR marker was developed to distinguish between the Lr34E22r and Lr34E22s alleles. A survey of 33 local hard winter wheat cultivars indicated that 7 cultivars carry the Lr34E22s allele and 26 cultivars carry the Lr34E22r allele. This study significantly improves our genetic understanding of allelic variation in the Lr34 gene and provides a functional molecular tool to improve leaf rust resistance in a major US wheat gene pool.  相似文献   

19.

Key message

A gene conferring seedling resistance to Puccinia triticina was mapped to chromosome 2BS in the wheat Morocco. The gene was shown to be distinct and was therefore designated Lr73.

Abstract

The wheat genotype Morocco, widely susceptible to isolates of Puccinia triticina, was resistant to an Australian isolate of this pathogen collected in 2004. Genetic studies established that the resistance in Morocco was also present the Australian wheat genotypes Avocet, Halberd, Harrier, Tincurrin and a selection of cultivar Warigal lacking the resistance gene Lr20. Genetic studies based on a cross with Halberd showed that the gene is dominant and located on chromosome 2BS (XwPt8760—4 cM—Lr73—1.4 cM—XwPt8235). The gene was genetically independent of the Lr13, Lr16 and Lr23 loci, also located on chromosome 2BS, indicating that it is distinct. The locus designation Lr73 was therefore assigned. On the basis of multi-pathotype tests, it is likely Lr73 is also present in the Australian wheat cultivars Clearfield STL, Federation (with Lr10), Gatcher (with Lr10 and Lr27+Lr31), Marombi (with Lr1 and Lr37), Pugsley (with Lr1 and Lr37), Spear (with Lr1), Stiletto and Tarsa (with Lr1). Gene Lr73 is unlikely to be of value in resistance breeding. However, recognising Lr73 is important to avoid its inadvertent selection in breeding programmes. Furthermore, the apparent rarity of avirulence for genes like Lr73, sometimes referred to as “fossil” resistance genes, makes them of interest in terms of the evolution of disease resistance in host plants and of virulence in the respective rust pathogens.  相似文献   

20.

Key message

A major stripe rust resistance QTL on chromosome 4BL was localized to a 4.5-Mb interval using comparative QTL mapping methods and validated in 276 wheat genotypes by haplotype analysis.

Abstract

CYMMIT-derived wheat line P10103 was previously identified to have adult plant resistance (APR) to stripe rust in the greenhouse and field. The conventional approach for QTL mapping in common wheat is laborious. Here, we performed QTL detection of APR using a combination of genome-wide scanning and extreme pool-genotyping. SNP-based genetic maps were constructed using the Wheat55 K SNP array to genotype a recombinant inbred line (RIL) population derived from the cross Mingxian 169?×?P10103. Five stable QTL were detected across multiple environments. After comparing SNP profiles from contrasting, extreme DNA pools of RILs six putative QTL were located to approximate chromosome positions. A major QTL on chromosome 4B was identified in F2:4 contrasting pools from cross Zhengmai 9023?×?P10103. A consensus QTL (LOD?=?26–40, PVE?=?42–55%), named QYr.nwafu-4BL, was defined and localized to a 4.5-Mb interval flanked by SNP markers AX-110963704 and AX-110519862 in chromosome arm 4BL. Based on stripe rust response, marker genotypes, pedigree analysis and mapping data, QYr.nwafu-4BL is likely to be a new APR QTL. The applicability of the SNP-based markers flanking QYr.nwafu-4BL was validated on a diversity panel of 276 wheat lines. The additional minor QTL on chromosomes 4A, 5A, 5B and 6A enhanced the level of resistance conferred by QYr.nwafu-4BL. Marker-assisted pyramiding of QYr.nwafu-4BL and other favorable minor QTL in new wheat cultivars should improve the level of APR to stripe rust.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号