首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
F Schirmer  S Ehrt    W Hillen 《Journal of bacteriology》1997,179(4):1329-1336
Degradation of phenol by Acinetobacter calcoaceticus NCIB8250 involves (sigma54-dependent expression of a multicomponent phenol hydroxylase and catechol 1,2-dioxygenase encoded by the mop operon. Complementation of a new mutant deficient in phenol utilization yielded the regulatory locus mopR. It is located in divergent orientation next to the mop operon. MopR is constitutively expressed at a low level from a sigma70-type promoter and belongs to the NtrC family of regulators. The amino acid sequence is similar to that of XylR regulating xylene degradation and to that of DmpR regulating dimethylphenol degradation in Pseudomonas spp. However, it shows a different effector profile for substituted phenols than DmpR. MopR activates phenol hydroxylase expression in the presence of phenol in Escherichia coli, indicating that it binds the effector. The phenol binding A domains of MopR and DmpR have fewer identical residues than the A domains of DmpR and XylR, despite the fact that XylR recognizes different effectors. This suggests that sequence conservation in the A domain does not reflect the potential to bind the respective effectors. Overexpression of the MopR A domain in the presence of wild-type MopR causes loss of mop inducibility by phenol, establishing its negative transdominance over MopR. Deletion of 110 residues from the N terminus did not affect transdominance of the truncated domain, whereas deletion of 150 residues abolished it completely. This result establishes the distinction of two subdomains, A(N) and A(C), which together constitute the A domain. The C-terminal portion of the A domain, A(C), shows considerable affinity for the C domain, even in the presence of the trigger phenol.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
The positive activation of several nodulation genes in strain ANU843 of Rhizobium leguminosarum biovar trifolii is mediated by the product of the nodD gene and by the interaction of NodD with plant-secreted inducer and anti-inducer compounds. We have mutagenized the nodD gene of strain ANU843 with nitrosoguanidine and have found that the ability of the mutated nodD products to interact with inducer and anti-inducer compounds is affected by the amino acid sequence in at least two key regions, including a novel area between amino acids 77 and 123. Several novel classes of mutants were recognized by phenotypic and molecular analysis of the mutant nodD genes. Classes 1 and 4 mutants were able to induce nodA expression independently of the addition of inducer and anti-inducer compounds and were unable to mediate autoregulation of the nodD gene. Classes 2 and 3 mutants retained several properties of the wild-type nodD, including the ability to interact with inducer and anti-inducer compounds and the capacity to autoregulate nodD expression. In addition, class 2 mutants showed an inducer-independent ability to mediate nodA expression to 10-fold higher levels over control strains. The class 3 mutant showed reactivity to compounds that had little or no inducing ability with the wild-type nodD. An alteration in NodD function was demonstrated with classes 2 and 3 mutants, which showed greatly enhanced ability to complement a Tn5-induced mutation in the nodD1 gene of strain NGR234 and to restore nodulation ability on the tropical legume siratro. Mutants of nodD possessing inducer-independent ability to activate nod gene expression (classes 1, 2, and 4) were capable of extending the host range of R. l. bv. trifolii to the nonlegume Parasponia. DNA sequence analysis showed that single base changes were responsible for the altered phenotypic properties of five of six mutants examined. Four of the six mutations affected amino acid residues in a putative receiver domain in the N-terminal end of the nodD protein.  相似文献   

14.
In this study the chlorophenol-degrading actinobacterium, Arthrobacter chlorophenolicus A6, was tested for its ability to grow on mixtures of phenolic compounds. During the experiments depletion of the compounds was monitored, as were cell growth and activity. Activity assays were based on bioluminescence output from a luciferase-tagged strain. When the cells were grown on a mixture of 4-chlorophenol, 4-nitrophenol and phenol, 4-chlorophenol degradation apparently was delayed until 4-nitrophenol was almost completely depleted. Phenol was degraded more slowly than the other compounds and not until 4-nitrophenol and 4-chlorophenol were depleted, despite this being the least toxic compound of the three. A similar order of degradation was observed in non-sterile soil slurries inoculated with A. chlorophenolicus. The kinetics of degradation of the substituted phenols suggest that the preferential order of their depletion could be due to their respective pKa values and that the dissociated phenolate ions are the substrates. A mutant strain (T99), with a disrupted hydroxyquinol dioxygenase gene in the previously described 4-chlorophenol degradation gene cluster, was also studied for its ability to grow on the different phenols. The mutant strain was able to grow on phenol, but not on either of the substituted phenols, suggesting a different catabolic pathway for the degradation of phenol by this microorganism.  相似文献   

15.
A new variant type of regulatory activator and relevant promoters (designated capR, Pr and Po) involved in the metabolism of phenolic compounds were cloned from Pseudomonas putida KCTC1452 by using PCR. The deduced amino acid sequence of CapR revealed a difference in nine amino acids from the effector binding domain of DmpR. To measure effector specificity, plasmids were constructed in such a way that the expression of luc gene for firefly luciferase or lacZ for beta-galactosidase as a reporter was under the control of capR. When Escherichia coli transformed with the plasmids was exposed to phenol, dramatic increases in the activity of luciferase or beta-galactosidase were observed in a range of 0.01-1 mM. Among various phenolic compounds tested, other effective compounds included catechol, 2-methylphenol, 3-methylphenol, 4-methylphenol, 2-chlorophenol, 4-chlorophenol, 2-nitrophenol, resorcinol, and 2, 5-dimethylphenol. The results indicate that CapR has effector specificity different from other related activators, CatR and DmpR. Waste water and soil potentially containing phenolic compounds were also tested by this system and the results were compared with chemical and GC data. The present results indicate that the biosensor consisting of capR and the promoters may be utilized for the development of a phenolic compounds-specific biosensor in monitoring the environmental pollutant.  相似文献   

16.
17.
Pseudomonas sp. strain CF600 is an efficient degrader of phenol and methylsubstituted phenols. These compounds are degraded by the set of enzymes encoded by the plasmid locateddmpoperon. The sequences of all the fifteen structural genes required to encode the nine enzymes of the catabolic pathway have been determined and the corresponding proteins have been purified. In this review the interplay between the genetic analysis and biochemical characterisation of the catabolic pathway is emphasised. The first step in the pathway, the conversion of phenol to catechol, is catalysed by a novel multicomponent phenol hydroxylase. Here we summarise similarities of this enzyme with other multicomponent oxygenases, particularly methane monooxygenase (EC 1.14.13.25). The other enzymes encoded by the operon are those of the well-knownmeta-cleavage pathway for catechol, and include the recently discoveredmeta-pathway enzyme aldehyde dehydrogenase (acylating) (EC 1.2.1.10). The known properties of thesemeta-pathway enzymes, and isofunctional enzymes from other aromatic degraders, are summarised. Analysis of the sequences of the pathway proteins, many of which are unique to themeta-pathway, suggests new approaches to the study of these generally little-characterised enzymes. Furthermore, biochemical studies of some of these enzymes suggest that physical associations betweenmeta-pathway enzymes play an important role. In addition to the pathway enzymes, the specific regulator of phenol catabolism, DmpR, and its relationship to the XylR regulator of toluene and xylene catabolism is discussed.  相似文献   

18.
Strains with greater ability to dissimilate m-toluate were obtained from the wild-type Pseudomonas putida (arvilla) mt-2 that harbors the TOL plasmid. Increased growth of a mutant strain on aromatic substrates was coupled with simultaneous increase in the activity of metapyrocatechase, an enzyme coded by the TOL plasmid, without changing its catalytic properties. In the mutant and the wild-type strains, the inducer specificity and the induction kinetics of metapyrocatechase synthesis were the same, and a half-maximal effect of m-toluate on the enzyme synthesis was observed at 0.25 mM. Thus, the increased utilizability seen in a mutant strain appeared to be due to an increased quantity of the enzymes coded by the TOL plasmid. The properties of the mutant strain were dependent upon the mutation on the TOL plasmid but not on the chromosome mutation. Transfer experiments with a strain carrying the mutant TOL (TOL-H) or the wild-type TOL plasmid revealed that the TOL-H transfer was 1,000 times greater than that of the wild type.  相似文献   

19.
The signaling pathways that mediate the transforming activity of the Rac1 GTPase remain to be determined. In the present study, we used effector domain mutants of the constitutively activated Rac(61L) mutant that display differential transforming activities and differential activation of downstream effector pathways to investigate the contribution of p70 S6 kinase (p70(S6K)) to Rac1 transformation and to decipher the signaling pathways leading from Rac1 to p70(S6K). First, we found that Rac1 transforming activity could be dissociated from Rac1 activation of p70(S6K). A weakly transforming Rac1 mutant retained the ability to activate p70(S6K), whereas some potently transforming effector mutants were impaired in their ability to activate p70(S6K). These data suggest that p70(S6K) is not necessary to promote full Rac1 transforming activity. We also found a strong correlation between the ability of the Rac(61L) effector mutants to activate p70(S6K) and their ability to activate the JNK mitogen-activated protein kinase. We found that the MLK3 serine/threonine kinase activated JNK and p70(S6K), whereas activation of p70(S6K) by Rac(61L) was significantly inhibited by dominant-negative MLK3. Additionally, the ability of the Rac(61L) effector mutants to activate MLK3 correlated well with their ability to activate p70(S6K) and JNK. Taken together, these results provide evidence that Rac1 coordinately activates p70(S6K) and JNK via MLK3 activation. Finally, we found that co-expression of wild type, but not kinase-dead, MLK3 significantly inhibited Rac1 transforming activity. These results suggest that MLK3 may be a negative regulator of the growth-promoting and transforming properties of Rac1.  相似文献   

20.
The genome of the nitrogen-fixing soil bacterium Sinorhizobium meliloti does not possess genes for bioremediation of aromatic pollutants. It has the well-known ability to interact specifically with the leguminous alfalfa plant, Medicago sativa. Our previous work has shown enhanced degradation of the nitroaromatic compound 2,4-dinitrotoluene (DNT) when a plasmid containing degradative genes was introduced in it. In this study we report molecular evidence of the transfer of a polychlorinated biphenyl (PCB)-biodegradative plasmid pE43 to S. meliloti strain USDA 1936. Several standard analytical tests and plant growth chamber studies were conducted to test the ability of S. meliloti to degrade 2',3,4-PCB congener. Alfalfa plant alone was able to degrade 30% of PCBs compared with control. No enhanced dechlorination was noted when alfalfa plant was grown with wild-type S. meliloti, and when alfalfa plant was grown with the S. meliloti electrotransformants (genetically modified) dechlorination of PCBs was more than twice that when alfalfa plant was grown with wild-type S. meliloti. When alfalfa plant was grown with uncharacterized mixed culture (containing nodule formers), almost equally significant PCB degradation was observed. The significance of this work is that the naturally occurring nitrogen-fixing soil bacterium S. meliloti (genetically modified) has the ability to enhance fertility of soil in association with the leguminous alfalfa plant while simultaneously enhancing bioremediation of PCB-contaminated soils. Enhanced bioremediation of PCB and robust alfalfa plant growth was also noted when uncharacterized mixed cultures containing alfalfa plant nodule formers were used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号