首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A group of 14-healthy men performed anisotonic isometric contractions (AIC), for 60 s, at an intensity of 100% maximal voluntary contraction force (MVC) during handgrip (HG) and leg extension (LE). Heart rate (f c), stroke volume index (SVI) and cardiac output index (QcI) were measured during the last 10 s of both AIC by an impedance reography method. Force (F) exerted by the subjects was recorded continuously and reported as a relative force (F r) (% MVC). The F generated during MVC was greater for LE than for HG (502.I N compared to 374.6 N, P < 0.001). The rate of decrease in F r was significantly slower for LE than HG for the first 25 s of the exercise (phase 1 of AIC). The F r developed by the subjects at the end of AIC was 40% MVC for both LE and HG. The increase in f c was greater for LE (63 beats · min–1) than for HG (52 beats · min–1), P < 0.01. The SVI decreased significantly from the resting level by 17.0 ml · m–2 and by 18.2 ml · m–2 for LE and HG, respectively. The QcI increased insignificantly for HG by 0.091 · min–1 · m–2 andsignificantly forLE by 0.561 · min–1 · m–2 (P < 0.001). It was concluded that although both AIC caused a significant decrease in SVI, greater increases in f c and Qc were observed for LE than for HG. The greater f c and Qc reported during LE was probably related to the greater relative force exerted by LE during phase 1 of AIC. It seems, therefore that central command might have dominated for phase 1 of AIC but that the muscle reflex also contributed significantly to the control of the cardiac response to the high intensity AIC.  相似文献   

2.
Using the impedance cardiography method, heart rate ( c) matched changes on indexed stroke volume (SI) and cardiac output (CI) were compared in subjects engaged in different types of training. The subjects consisted of untrained controls (C), volleyball players (VB) who spent about half of their training time (360 min · week–1) doing anaerobic conditioning exercises and who had a maximal oxygen uptake ( ) 41% higher than the controls, and distance runners (D) who spent all their training time (366 min·week–1) doing aerobic conditioning exercises and who had a 26% higher than VB. The subjects performed progressive submaximal cycle ergometer exercise (10 W·min–1) up to c of 150 beats·min–1. In group C, SI had increased significantly (P<0.05) at c of 90 beats·min–1 ( + 32%) and maintained this difference up to 110 beats·min–1, only to return to resting values on reaching 130 beats·min–1 with no further changes. In group VB, SI peaked (+ 54%) at c of 110 beats·min–1, reaching a value significantly higher than that of group C, but decreased progressively to 22010 of the resting value on reaching 150 beats·min–1. In group D, SI peaked at c of 130 beats·min–1 (+ 54%), reaching a value significantly higher than that of group VB, and showed no significant reduction with respect to this peak value on reaching 150 beats·min–1. As a consequence, the mean CI increase per c unit was progressively higher in VB than in C (+46%) and in D than in VB (+ 105%). It was concluded that thef c value at which SI ceased to increase during incremental exercise was closely related to the endurance component in the training programme.  相似文献   

3.
To determine whether aerobic conditioning alters the orthostatic responses of older subjects, cardiovascular performance was monitored during graded lower body negative pressure in nine highly trained male senior athletes (A) aged 59-73 yr [maximum O2 uptake (VO2 max) = 52.4 +/- 1.7 ml.kg-1 x min-1] and nine age-matched control subjects (C) (VO2 max = 31.0 +/- 2.9 ml.kg-1 x min-1). Cardiac volumes were determined from gated blood pool scintigrams by use of 99mTc-labeled erythrocytes. During lower body negative pressure (0 to -50 mmHg), left ventricular end-diastolic and end-systolic volume indexes and stroke volume index decreased in both groups while heart rate increased. The decreases in cardiac volumes and mean arterial pressure and the increase in heart rate between 0 and -50 mmHg were significantly less in A than in C. For example, end-diastolic volume index decreased by 32 +/- 4 ml in C vs. 14 +/- 2 ml in A (P < 0.01), mean arterial pressure declined 7 +/- 5 mmHg in C and increased by 5 +/- 3 mmHg in A (P < 0.05), and heart rate increased 13 +/- 3 beats/min in C and 7 +/- 1 beats/min in A (P < 0.05). These data suggest that increased VO2 max among older men is associated with improved orthostatic responses.  相似文献   

4.
5.
Previous studies have suggested that increases in skin blood flow (SkBF) are the primary physiological mechanism responsible for cardiovascular drift during exercise in the heat. Most of these studies, however, used exercise bouts of 60 min in duration or less. The purpose of this study was to explore the possibility that during prolonged (> 60 min) exercise in the heat, cardiovascular drift can occur without a concomitant increase in SkBF. The subjects were five heat-acclimated female volunteers. Each subject completed a 6-h heat exposure (38oC, 62% RH). Heart rate (HR), stroke volume (SV), and two independent measures of SkBF were obtained each hour. Cardiovascular drift occurred, as evidenced by a significant (p<0.05) 19% increase in HR and a significant 21% decrease in SV. Interestingly, however, SkBF plateaued by hour 2 and showed no further increase. Such results suggest that during prolonged exercise in the heat, when SkBF has reached very high values (>20 ml / 100 ml per min) and plateaued, cardiovascular drift can still occur.  相似文献   

6.
This study aimed to explore the 24-h patterns of stroke volume, cardiac output, and peripheral vascular resistance along with other correlated variables, such as left ventricular ejection time, ejection velocity index, thoracic fluid index, heart rate, and blood pressure. The study was performed on 12 clinically healthy subjects by means of a noninvasive beat-to-beat monitoring using the thoracic electric bioimpedance technique associated with the automated sphygmomano-metric recording. Time data series were analyzed by means of chronobiological procedures. The results documented the occurrence of a circadian rhythm for all the variables investigated, giving relevance to the beat-to-beat bioperiodicity of cardiac output and peripheral vascular resistance. Temporal quantification of the investigated variables may be useful for a better insight of the chronophysiology of the cardiovascular apparatus.  相似文献   

7.
Maximal vascular leg conductance in trained and untrained men   总被引:4,自引:0,他引:4  
Lower leg blood flow and vascular conductance were studied and related to maximal oxygen uptake in 15 sedentary men (28.5 +/- 1.2 yr, mean +/- SE) and 11 endurance-trained men (30.5 +/- 2.0 yr). Blood flows were obtained at rest and during reactive hyperemia produced by ischemic exercise to fatigue. Vascular conductance was computed from blood flow measured by venous occlusion plethysmography, and mean arterial blood pressure was determined by auscultation of the brachial artery. Resting blood flow and mean arterial pressure were similar in both groups (combined mean, 3.0 ml X min-1 X 100 ml-1 and 88.2 mmHg). After ischemic exercise, blood flows were 29- and 19-fold higher (P less than 0.001) than rest in trained (83.3 +/- 3.8 ml X min-1 X 100 ml-1) and sedentary subjects (61.5 +/- 2.3 ml X min-1 X 100 ml-1), respectively. Blood pressure and heart rate were only slightly elevated in both groups. Maximal vascular conductance was significantly higher (P less than 0.001) in the trained compared with the sedentary subjects. The correlation coefficients for maximal oxygen uptake vs. vascular conductance were 0.81 (trained) and 0.45 (sedentary). These data suggest that physical training increases the capacity for vasodilation in active limbs and also enables the trained individual to utilize a larger fraction of maximal vascular conductance than the sedentary subject.  相似文献   

8.
9.
We investigated the effect of central hypervolaemia during water immersion up to the xiphoid process on the oxygen uptake (VO2) and heart rate (HR) response to arm cranking. Seven men performed a 6-min arm-cranking exercise at an intensity requiring a VO2 at 80% ventilatory threshold both in air [C trial, 29 (SD 9) W] and immersed in water [WI trial, 29 (SD 11) W] after 6 min of sitting. The VO2 (phase 2) and HR responses to exercise were obtained from a mono-exponential fit [f(t) = baseline + gain x (1 - e(-(t-TD)/tau))]. The response was evaluated by the mean response time [MRT; sum of time constant (tau) and time delay (TD)]. No significant difference in VO2 and HR gains between the C and WI trials was observed [VO2 0.78 (SD 0.1) vs 0.80 (SD 0.2) l x min(-1), HR 36 (SD 7) vs 37 (SD 8) beats x min(-1), respectively]. Although the HR MRT was not significantly different between the C and WI trials [17 (SD 3), 19 (SD 8) s, respectively), VO2 MRT was greater in the WI trial than in the C trial [40 (SD 6), 45 (SD 6) s, respectively; P < 0.05]. Assuming no difference in VO2 in active muscle between the two trials, these results would indicate that an increased oxygen store and/or an altered response in muscle blood distribution delayed the VO2 response to exercise.  相似文献   

10.
This cross-sectional study compared hormonal responses to resistance exercise between trained and untrained men to investigate the adaptations of the endocrine system to long-term strength training in middle-aged men. Twenty-one middle-aged men were recruited for this study and matched into a strength-trained group (SG) (n = 10) and an untrained group (UG) (n = 11). In the SG, the individuals had practiced strength training for hypertrophy for at least 3 years. Upper- and lower-body muscle strength was measured with a 1 repetition maximum (1RM) test. Blood samples were collected at rest and after multiple sets of a superset strength training protocol (SSTP), with an intensity of 75% of 1RM values. With these blood samples, the levels of total testosterone (TT), free testosterone (FT), dehydroepiandrosterone (DHEA), cortisol, and sex hormone-binding globulin (SHBG) were determined. In addition, the TT-to-cortisol ratio and TT-to-SHBG ratio were calculated. There was no difference at rest between groups in hormonal values for TT, FT, DHEA, cortisol, the TT-to-SHBG ratio, and the TT-to-cortisol ratio. There were increases after SSTP in the levels of TT, FT, DHEA, and cortisol and the TT-to-SHBG ratio in the UG, but only FT increased in the SG. The SG demonstrated lower values in the TT-to-SHBG ratio after the training session. These results suggest the presence of alterations in anabolic and catabolic hormonal responses to resistance exercise in long-term trained middle-aged men, with the trained subjects demonstrating lower responsiveness in the hormone values. Long-term trained men seem to require a higher volume of training, at least similar to their daily workout, to stimulate greater hormone responses.  相似文献   

11.
Metabolic changes following eccentric exercise in trained and untrained men   总被引:10,自引:0,他引:10  
The effects of one 45-min bout of high-intensity eccentric exercise (250 W) were studied in four male runners and five untrained men. Plasma creatine kinase (CK) activity in these runners was higher (P less than 0.001) than in the untrained men before exercise and peaked at 207 IU/ml 1 day after exercise, whereas in untrained men the maximum was 2,143 IU/ml 5 days after exercise. Plasma interleukin-1 (IL-1) in the trained men was also higher (P less than 0.001) than in the untrained men before exercise but did not significantly increase after exercise. In the untrained men, IL-1 was significantly elevated 3 h after exercise (P less than 0.001). In the untrained group only, 24-h urines were collected before and after exercise while the men consumed a meat-free diet. Urinary 3-methylhistidine/creatinine in the untrained group rose significantly from 127 mumol/g before exercise to 180 mumol/g 10 days after exercise. The results suggest that in untrained men eccentric exercise leads to a metabolic response indicative of delayed muscle damage. Regularly performed long distance running was associated with chronically elevated plasma IL-1 levels and serum CK activities without acute increases after an eccentric exercise bout.  相似文献   

12.
13.
The purpose of this study was to see whether artificial acclimatization to cold would reduce the pressor response to noradrenaline (NA) as natural acclimatization has been shown to do, and whether it would induce nonshivering thermogenesis. Three white men were infused with NA at four dosage levels between 0.038 and 0.300 g·kg–1·min–1 (2–23 g·min–1), before and after artificial acclimatization to cold and again 4 months later when acclimatization had decayed. Acclimatization was induced by ten daily cold (15°Q baths of 30–60 min followed by rapid rewarming in hot (38–42°C) water, and was confirmed by tests of the subjects responses to whole-body cooling in air. Three control subjects also underwent the first and third tests. Acclimatization substantially reduced the pressor response to NA at 0.150 and 0.300 g·kg–1·min–1, confirming earlier findings by the same technique in naturally acclimatized men, and its decay increased this response to beyond its initial levels (P<0.05 for both changes). Acclimatization did not change the response to NA of heart rate, subjective impressions, skin temperature of finger and toe, pulmonary ventilation, or plasma free fatty acids and ketone bodies. At no time did NA increase oxygen consumption, or increase skin temperature or heat flow over reported sites of brown fat. These findings would seem to show that acclimatization to cold reduces sensitivity to the pressor effect of NA but does not induce nonshivering thermogenesis, and that the reduced sensitivity is replaced by a hypersensitivity to NA when acclimatization decays.  相似文献   

14.
FloTrac传感器和Vigileo监护仪(爱德华生命科学公司)是一个基于动脉压力波形分析技术的微创心排量测定系统,可以连续的计算心排量。除了心排量(心指数),FloTrac/Vigileo系统还可以监测每搏变异量。如果提供中心静脉压数据,则可以计算全身血管阻力及其指数。利用仪器特别设计的中心静脉导管(Precep),可以持续监测中心静脉血氧饱和度。这个设备已由美国食品及药物管理局(FDA)批准应用于成人,目前有大量的文献描述了该设备应用于多种重症疾病的临床治疗中。本文为这一新技术作一综述以及讨论它的临床应用和局限性。  相似文献   

15.
The present investigation was undertaken to examine the relationship between plasma potassium (K+) and ventilation (VE) during incremental exercise. Blood lactate (La-) was also measured, and its relationship with VE was similarly examined. Eight endurance-trained triathletes (ET) and eight active but untrained men (UT) performed an incremental cycling test to volitional fatigue. Maximal oxygen uptake (VO2max) and oxygen uptake (VO2) at lactate threshold (LT) were higher (P < 0.05) in ET (VO2max 4.60 +/- 0.10 l/min, LT 2.77 +/- 0.85 l/min) than in UT (VO2max 3.79 +/- 0.11 l/min, LT 1.94 +/- 0.60 l/min). There were significant (P < 0.05) correlations between VE and K+ (UT 0.87, ET 0.77) and between VE and La- (UT 0.88, ET 0.85). In ET compared with UT, VE was lower (P < 0.05) at 330 W, K+ was lower at 300 and 330 W, and La- was lower at all work loads > 90 W. These results suggest that K+ may make an important contribution to the regulation of ventilation during incremental exercise and that endurance training attenuates the K+ response to that exercise.  相似文献   

16.
Blood lactate production and recovery from anaerobic exercise were investigated in 19 trained (AG) and 6 untrained (CG) prepubescent boys. The exercises comprised 3 maximal test performances; 2 bicycle ergometer tests of different durations (15 s and 60 s), and running on a treadmill for 23.20 +/- 2.61 min to measure maximal oxygen uptake. Blood samples were taken from the fingertip to determine lactate concentrations and from the antecubital vein to determine serum testosterone. Muscle biopsies were obtained from vastus lateralis. Recovery was passive (seated) following the 60 s test but that following the treadmill run was initially active (10 min), and then passive. Peak blood lactate was highest following the 60 s test (AG, 13.1 +/- 2.6 mmol.1-1 and CG, 12.8 +/- 2.3 mmol.1-1). Following the 15 s test and the treadmill run, peak lactate values were 68.7 and 60.6% of the 60 s value respectively. Blood lactate production was greater (p less than 0.001) during the 15 s test (0.470 +/- 0.128 mmol.1-1.s-1) than during the 60 s test (0.184 +/- 0.042 mmol.1-1.s-1). Although blood lactate production was only nonsignificantly greater in AG, the amount of anaerobic work in the short tests was markedly greater (p less than 0.05-0.01) in AG than CG. Muscle fibre area (type II%) and serum testosterone were positively correlated (p less than 0.05) with blood lactate production in both short tests. Blood lactate elimination was greater (p less than 0.001) at the end of the active recovery phase than in the next (passive) phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
12 healthy men aged 21-25 years performed, in the sitting position, a sustained handgrip at 25% of their maximum voluntary contraction, first with each hand separately and then with both hands simultaneously. Heart rate (HR), systolic blood pressure (SBP), stroke volume (determined reographically) and plasma catecholamine concentration were measured during each handgrip test. The HR and SBP increased consistently during each handgrip test while stroke volume decreased by approximately 20% of the initial value. Cardiac output did not change significantly. There were no significant differences in the magnitude and dynamics of the cardiovascular responses between the tests with one and with both hands. Plasma noradrenaline and adrenaline levels showed similar elevations in response to handgrip performed with the right hand and with both hands, while during the exercise performed with the left hand the increase in the plasma catecholamine concentration was less pronounced. It was concluded that: (1) during sustained handgrip, performed in the sitting position by young healthy subjects, the stroke volume markedly decreases and cardiac output does not change significantly in spite of the increased HR; (2) the cardiovascular and sympatho-adrenal responses to static handgrip do not depend on the mass of contracting muscle when the same relative tension is developed.  相似文献   

18.
Groups of young, adult males and females performed the handgrip and standing long jump tests. Their total forearm and leg volumes were calculated from a series of circumference and length measurements, and the lean volumes (bone + muscle) calculated by taking the skinfold thickness into consideration. In the handgrip, the mean female performance was 298 N compared with 496 N for the males. In the standing long jump, mean performance expressed as distance x body mass was 87.3 kg.m for females compared with 137.7 kg.m for males. These superior performances of males could simply reflect their greater muscle mass, as the mean lean volumes of female and male limbs respectively were 0.54 l and 0.89 l for forearms, and 11.82 l and 14.82 l for the two legs. However, when the performances of males and females were grouped by lean limb volume, it was found that while in both tests there were linear relationships, males and females did not share a common line. In both tests the male relationship was at a higher level than the female; therefore, for a given lean volume, the male performance was significantly superior to that of the female. The gender difference found in this study has not been seen in other studies in which the performance of skeletal muscle has been related to the cross-sectional area of the active muscles and the possible reasons for the differences are considered.  相似文献   

19.
The purpose of this study was to examine cardiovascular responses during arm exercise in paraplegics compared to a well-matched control group. A group of 11 male paraplegics (P) with complete spinal cord-lesions between T6 and T12 and 11 male control subjects (C), matched for physical activity, sport participation and age performed maximal arm-cranking exercise and submaximal exercise at 20%, 40% and 60% of the maximal load for each individual. Cardiac output (Qc) was determined by the CO2 rebreathing method. Maximal oxygen uptake was significantly lower and maximal heart rate (fc) was significantly higher in P compared to C. At the same oxygen uptakes no significant differences were observed in Qc between P and C; however, stroke volume (SV) was significantly lower and fc significantly higher in P than in C. The lower SV in P could be explained by an impaired redistribution of blood and, therefore, a reduced ventricular filling pressure, due to pooling of venous blood caused by inactivity of the skeletal muscle pump in the legs and lack of sympathetic vasoconstriction below the lesion. In conclusion, in P maximal performance appears to have been limited by a smaller active muscle mass and a lower SV despite the higher fc,max. During submaximal exercise, however, this lower SV was compensated for by a higher fc and, thus at the same submaximal oxygen uptake, Qc was similar to that in the control group.  相似文献   

20.
The effects of beta-blockade on tidal volume (VT), breath cycle timing, and respiratory drive were evaluated in 14 endurance-trained [maximum O2 uptake (VO2max) approximately 65 ml X kg-1 X min-1] and 14 untrained (VO2max approximately 50 ml X kg-1 X min-1) male subjects at 45, 60, and 75% of unblocked VO2max and at VO2max. Propranolol (PROP, 80 mg twice daily), atenolol (ATEN, 100 mg once a day) and placebo (PLAC) were administered in a randomized double-blind design. In both subject groups both drugs attenuated the increases in VT associated with increasing work rate. CO2 production (VCO2) was not changed by either drug during submaximal exercise but was reduced in both subject groups by both drugs during maximal exercise. The relationship between minute ventilation (VE) and VCO2 was unaltered by either drug in both subject groups due to increases in breathing frequency. In trained subjects VT was reduced during maximal exercise from 2.58 l/breath on PLAC to 2.21 l/breath on PROP and to 2.44 l/breath on ATEN. In untrained subjects VT at maximal exercise was reduced from 2.30 l/breath on PLAC to 1.99 on PROP and 2.12 on ATEN. These observations indicate that 1) since VE vs. VCO2 was not altered by beta-adrenergic blockade, the changes in VT and f did not result from a general blunting of the ventilatory response to exercise during beta-adrenergic blockade; and 2) blockade of beta 1- and beta 2-receptors with PROP caused larger reductions in VT compared with blockade of beta 1-receptors only (ATEN), suggesting that beta 2-mediated bronchodilation plays a role in the VT response to heavy exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号