首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Epidermal growth factor (EGF)-like ligands and their receptors constitute one of the most important signaling networks functioning in normal tissue development and cancer biology. Recent in vivo mouse models suggest this signaling network plays an essential role in bone metabolism. Using a coculture system containing bone marrow macrophage and osteoblastic cells, here we report that EGF-like ligands stimulate osteoclastogenesis by acting on osteoblastic cells. This stimulation is not a direct effect because osteoclasts do not express functional EGF receptors (EGFRs). Further studies reveal that EGF-like ligands strongly regulate the expression of two secreted osteoclast regulatory factors in osteoblasts by decreasing osteoprotegerin (OPG) expression and increasing monocyte chemoattractant protein 1 (MCP1) expression in an EGFR-dependent manner and consequently stimulate TRAP-positive osteoclast formation. Addition of exogenous OPG completely inhibited osteoclast formation stimulated by EGF-like ligands, while addition of a neutralizing antibody against MCP-1 exhibited partial inhibition. Coculture with bone metastatic breast cancer MDA-MB-231 cells had similar effects on the expression of OPG and MCP1 in the osteoblastic cells, and those effects could be partially abolished by the EGFR inhibitor PD153035. Because a high percentage of human carcinomas express EGF-like ligands, our findings suggest a novel mechanism for osteolytic lesions caused by cancer cells metastasizing to bone.  相似文献   

7.
Regulation of osteoblast differentiation by transcription factors   总被引:15,自引:0,他引:15  
  相似文献   

8.
9.
Runx2参与调控Osterix 启动子活性及其基因表达   总被引:2,自引:0,他引:2  
尽管Runx2和Osterix都是成骨细胞分化途径中关键的转录因子,但是Runx2是否能够调控Osterix,还不为所知.研究发现,在非成骨细胞系,无论是间充质干细胞还是已分化的细胞,以及成骨细胞系中,Runx2都能诱导Osterix的表达.同时Runx2能够上调3.2kb人的Osterix基因启动子活性.进一步实验证明,在这一段启动子中存在Runx2功能性的结合位点.因而,实验结果有力地支持了这样一个假设,即Runx2参与了Osterix基因的表达调控.瞬时转染和荧光素酶双报告分析结果显示,在非成骨细胞中,Osterix明显上调2.3kb的Ⅰ型胶原蛋白启动子活性,但Runx2却不能.这样的差别暗示,在成骨细胞分化过程中位于Runx2下游的转录因子Osterix是刺激Ⅰ型胶原蛋白基因表达所必需的.  相似文献   

10.
11.
12.
13.
The Runx2 gene is essential for osteoblast differentiation and function. In vivo over‐expression of Runx2 in osteoblasts increases bone resorption, and blocks terminal osteoblast differentiation. Several lines of evidence suggest that osteoblastic matrix metalloproteinases (MMPs) could contribute to the increased bone resorption observed in mice over‐expressing Runx2 (Runx2 mice). The goal of our study was to use a transgenic approach to find out whether the inhibition of osteoblastic MMPs can reduce the bone loss induced by the over‐expression of Runx2. We analyzed the effect of the in vivo over‐expression of the TIMP‐1 in osteoblasts on the severe osteopenic phenotype in Runx2 mice. Females with the different genotypes (WT, Runx2, TIMP‐1 and TIMP‐1/Runx2) were analyzed for bone density, architecture, osteoblastic and osteoclastic activity and gene expression using qPCR. TIMP‐1 over‐expression reduces the bone loss in adult Runx2 mice. The prevention of the bone loss in TIMP‐1/Runx2 mice was due to a combination of reduced bone resorption and sustained bone formation. We present evidence that the ability of osteoblastic cells to induce osteoclastic differentiation is lower in TIMP‐1/Runx2 mice than in Runx2 mice, probably due to a reduction in the expression of RANK‐L and of the Runx2 transgene. Osteoblast primary cells from TIMP‐1/Runx2 mice, but not from Runx2 mice, were able to differentiate into fully mature osteoblasts producing high osteocalcin levels. In conclusion, our findings suggest that osteoblastic MMPs can affect osteoblast differentiation. Our work also indicates that osteoblastic MMPs are partly responsible for the bone loss observed in Runx2 transgenic mice. J. Cell. Physiol. 222:219–229, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Qiu N  Cao L  David V  Quarles LD  Xiao Z 《PloS one》2010,5(12):e15240
Pkd1 localizes to primary cilia in osteoblasts and osteocytes. Targeted deletion of Pkd1 in osteoblasts results in osteopenia and abnormalities in Runx2-mediated osteoblast development. Kif3a, an intraflagellar transport protein required for cilia function, is also expressed in osteoblasts. To assess the relationship between Pkd1 and primary cilia function on bone development, we crossed heterozygous Pkd1- and Kif3a-deficient mice to create compound Pkd1 and Kif3a-deficient mice. Pkd1 haploinsufficiency (Pkd1(+/Δ)) resulted in osteopenia, characterized by decreased bone mineral density, trabecular bone volume, and cortical thickness. In addition, deficiency of Pkd1 resulted in impaired osteoblastic differentiation and enhanced adipogenesis in both primary osteoblasts and/or bone marrow stromal cell cultures. These changes were associated with decreased Runx2 expression, increased PPARγ expression, and impaired hedgehog signaling as evidenced by decreased Gli2 expression in bone and osteoblast cultures. In contrast, heterozygous Kif3a(+/Δ) mice display no abnormalities in skeletal development or osteoblast function, but exhibited decreased adipogenic markers in bone and impaired adipogenesis in vitro in association with decreased PPARγ expression and upregulation of Gli2. Superimposed Kif3a deficiency onto Pkd1(+/Δ) mice paradoxically corrected the effects of Pkd1 deficiency on bone mass, osteoblastic differentiation, and adipogenesis. In addition, Runx2, PPARγ and Gli2 expression in bone and osteoblasts were normalized in compound double Pkd1(+/Δ) and Kif3a(+/Δ) heterozygous mice. The administration of sonic hedgehog, overexpression of Gli2, and the PC1 C-tail construct all increased Gli2 and Runx2-II expression, but decreased PPARγ2 gene expression in C3H10T1/2 cells. Our findings suggest a role for Pkd1 and Kif3a to counterbalance the regulation of osteogenesis and adipogenesis through differential regulation of Runx2 and PPARγ by Gli2.  相似文献   

15.
16.
17.
18.
19.
While the roles of the mammalian target of rapamycin (mTOR) signaling in regulation of cell growth, proliferation, and survival have been well documented in various cell types, its actions in osteoblasts are poorly understood. In this study, we determined the effects of rapamycin, a specific inhibitor of mTOR, on osteoblast proliferation and differentiation using MC3T3-E1 preosteoblastic cells (MC-4) and primary mouse bone marrow stromal cells (BMSCs). Rapamycin significantly inhibited proliferation in both MC-4 cells and BMSCs at a concentration as low as 0.1 nM. Western blot analysis shows that rapamycin treatment markedly reduced levels of cyclin A and D1 protein in both cell types. In differentiating osteoblasts, rapamycin dramatically reduced osteoblast-specific osteocalcin (Ocn), bone sialoprotein (Bsp), and osterix (Osx) mRNA expression, ALP activity, and mineralization capacity. However, the drug treatment had no effect on osteoblast differentiation parameters when the cells were completely differentiated. Importantly, rapamycin markedly reduced levels of Runx2 protein in both proliferating and differentiating but not differentiated osteoblasts. Finally, overexpression of S6K in COS-7 cells significantly increased levels of Runx2 protein and Runx2 activity. Taken together, our studies demonstrate that mTOR signaling affects osteoblast functions by targeting osteoblast proliferation and the early stage of osteoblast differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号