首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various quaternary chitosan derivative structures were synthesized by reacting N-chloroacyl-6-O-triphenylmethylchitosans with tertiary amines. Full substitutions were obtained from the quaternization reactions and the obtained water-soluble quaternary chitosan derivatives were thoroughly characterized with (1)H NMR, (13)C NMR, (1)H-(13)C HSQC NMR, and FT-IR.  相似文献   

2.
Schiff's base of chitosan (BCTS) was obtained by the reaction of chitosan (CTS) and benzaldehyde. Then BCTS reacted with acyl chloride which was synthesized by p-aminobenzoic acid and thionyl chloride to get N-benzoyl-O-aminobenzoyl chitosan ester (BABCTSE), removing the groups of amino protection of BABCTSE to get the final product (ABCTSE). The structures of the derivatives were characterized by FT-IR, (1)H NMR, (13)C NMR and elemental analysis. The elemental analysis results indicated that the degrees of substitution (DS) of the products were 16.8% and 40.4%. The synthesized compounds exhibited an excellent solubility in organic solvents. TG and DTG results showed that thermal stability of the derivatives was lower than that of chitosan. In addition, the existence of two different amido in the molecular structures contributed to forming more -NH(3)(+) in the acid solution which could make the derivatives have a greater advantage in the field of bacteriostasis.  相似文献   

3.
Acylated chitosan was synthesized by reaction of chitosan and stearoyl chloride. The chemical structures and physical properties of the prepared compounds were confirmed by Fourier transform infrared (FT-IR), 1H Nuclear Magnetic Resonance (1H NMR) spectroscopy, X-ray diffraction (XRD) and Thermogravimetric (TG) techniques. The degree of substitution (DS) was calculated by 1H NMR and ranged from 1.8 to 3.8. The synthesized compounds exhibited an excellent solubility in organic solvents. XRD analysis showed that they had high crystalline structure. TG results demonstrated that thermal stability of the prepared compounds was lower than that of chitosan, the weight loss decreased with increase of DS. This procedure could be a facile method to prepare organic-soluble chitosan derivatives.  相似文献   

4.
N-Alkyled photo-polymeriable chitosan derivative (PEGDA-CS) was synthesized by Michael reaction of chitosan and polyethylene glycol diacrylate (PEGDA) under mild reaction conditions. The chemical structure and physical properties of PEGDA-CS were characterized by FT-IR, 1H NMR, XRD and TG techniques. The degree of substitution (DS) of PEGDA-CS could be calculated from 1H NMR. PEGDA-CS exhibited good solubility in distilled water. XRD analysis showed that PEGDA-CS was amorphous. TG results demonstrated that thermal stability of the derivate was lower than that of chitosan. Antimicrobial test showed that PEGDA-CS had the antimicrobial activity on Escherichia coli. It could photopolymerize under ultraviolet light with 2959 as initiator.  相似文献   

5.
Two water-soluble chitosan (WSC) derivatives of N-succinyl-chitosan (NSCS) and N,O-succinyl-chitosan (NOSCS) with a degree of substitution (DS) that ranged form 0.28 to 0.61 were selectively synthesized by varying the molar ration of succinic anhydride and chitosan. The chemical structure and physical properties of the chitosan derivatives were characterized by FT-IR, 1H NMR, and XRD. XRD analysis showed that the derivatives were amorphous. The lysozyme enzymatic degradation results revealed that the NSCS was of higher susceptibility to lysozyme. The degradation rate and the solubility of the chitosan derivatives were strongly determined by the degree of substitution and the position of the substitution. The results of antithrombotic properties, hemolytic properties and anticoagulant properties of WSCs indicated that the blood compatibility was dramatically improved, and the carboxyl group introduced on the C-6 or C-2 hydroxyl group appeared to impact anticoagulant activity in different ways.  相似文献   

6.
A new type of chitosan derivative, dehydroabietic acid-modified chitosan (DAMC), was synthesized by the acylation reaction of chitosan with dehydroabietic acid chloride (DHAC) under microwave irradiation. The resulting product (DAMC) was characterized by FT-IR, UV, 1H NMR, X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and elemental analysis. The degree of substitution (DS) of DAMC was 16.5%. And chitosan and DAMC were used as carriers of fenoprofen calcium (FC), and their controlled release behavior in artificial intestinal juice was studied. The results showed that the controlled release of FC from the carrier of DAMC is better than that from original chitosan.  相似文献   

7.
The objective of this work is to improve the solubility of chitosan at neutral or basic pH using the supercritical carbon dioxide (sc.CO2). A novel water-soluble chitosan–l-glutamic acid (Cl-GA) aerogel derivative was synthesized by reaction of 85% deacetylated chitosan with l-glutamic acid (l-GA) in aq.AcOH subjected to solvent exchange prior to using sc.CO2 as a nonsolvent for the polymer. The prepared aerogel derivative and molecular conformation of modified chitosan are characterized by using UV, FTIR, 1H NMR, and CD techniques. Some physical properties and surface morphology were analyzed by X-ray diffraction, differential scanning calorimetry (DSC), thermogravimetry (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and porosimetry analysis. Overall, the sc.CO2 assisted chitosan aerogel derivative opens new perspectives in biomedical applications.  相似文献   

8.
A short synthesis of chemoselective chitosan derivatives was achieved by copper-catalyzed Huisgen cycloaddition, which is an ideal reaction for click chemistry, by using N-(4-azidophthaloyl)-chitosan. N-(4-azidophthaloyl)-chitosan was prepared through chemoselective N-bromophthaloylation of chitosan in acidic water and subsequent azidation. The obtained N-(4-bromopthaloyl)-chitosan had higher solubility in common solvents than conventional phthaloyl chitosan. N-(4-azidophthaloyl)-chitosan was successfully converted with ethynyl derivatives having functional groups (hydroxymethyl, phenyl, and methyl ester) in the presence of copper(II) sulfate, sodium ascorbate and/or trimethylamine. FT-IR spectra, elemental analyses, and (1)H and (13)C NMR spectra supported that the desired chitosan derivatives were chemoselectively transferred by these groups with a 1,4-triazole linker.  相似文献   

9.
The novel N-heterocyclic chitosan aerogel derivatives were prepared by reacting 79% deacetylated chitosan separately with 4-pyridinecarboxaldehyde and 2,6-pyridinedicarboxaldehyde followed by subsequent solvent exchange into acetone, filteration and lyophilization. The identity of the Schiff bases was confirmed by UV–vis absorption spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The N-heterocyclic chitosan derivatives were evaluated by X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), rheological studies and biological activity. Overall, the N-heterocyclic chitosan derivative based gels open new perspectives in biomedical applications.  相似文献   

10.
Selective N-arylation of chitosan was performed via a Schiff bases formed by the reaction between the 2-amino group of glucosamine residue of chitosan with an aromatic aldehyde under acidic condition followed by reduction of the Schiff base intermediate with sodium cyanoborohydride (Borch reduction). Aromatic aldehydes bearing either an electron donating or electron withdrawing substituent were used. The chemical structures and thermal properties of the N-aryl chitosans were characterized by FT-IR, (1)H NMR, (13)C NMR, TGA, and DSC. The extent of N-substitution (ES) was influenced by the molar ratio of the aldehyde to the glucosamine residue of chitosan, the reaction time and the substituent on the aromatic ring. Lower ESs resulted from N-arylation using an aldehyde with an electron donating substituent. A linear relationship between the targeted ES and the ES obtained was observed when aldehydes bearing electron withdrawing substituents were employed.  相似文献   

11.
壳聚糖与甲醛、甲酸反应得到N,N-二甲基壳聚糖,然后以硫酸二甲酯为季铵化试剂反应得到N,N,N-三甲基壳聚糖甲基硫酸盐(TMCMS),用IR1、H NMR和元素分析对其结构进行了表征。元素分析结果表明其季铵化度为74.6%,差示扫描量热法和热重分析法结果表明其热稳定性比壳聚糖差,但其水溶性明显优于壳聚糖,25℃时在水中的溶解度可达20 mg/mL,浓度为2 mg/mL时在pH 3~12范围内无沉淀产生。  相似文献   

12.
Chitosan derivatives are obtained by reaction of chitosan with a low degree of acetylation and levulinic acid under different experimental conditions. The chemical structure of the different derivatives obtained is determined using 1H and 13C NMR spectroscopies. The intrinsic viscosity is used to follow the molecular weight evolution. Finally, conditions are described in which water-soluble N-carboxybutylchitosan is obtained. In particular, the time of the reduction step and the ratio between reagents are investigated. Under mild conditions and short times of reduction there is a very low degree of substitution and only the monocarboxybutylchitosan is formed. The dicarboxylated form is never observed. The cyclic derivative (5-methylpyrrolidinone chitosan) is obtained when the reducing agent is added slowly to the reactants.  相似文献   

13.
The efficient procedure for preparation of chitosan acid complexes containing aspartic acid, benzilic acid and terephthalic acid moieties in isopropyl alcohol under mild condition has been demonstrated. The ionic complexation between chitosan and the acid is confirmed by FTIR and 1H NMR spectroscopy. The circular dichroism (CD) spectra of chitosan/aspartic acid complex showed negative (at λ = 312) band, chitosan/benzilic acid and chitosan/terephthalic complexes showed positive (at λ = 286 and 315 nm) band in DMSO, indicating that the polymers adopted helical (left-handed and last two right-handed) secondary structure. The inversion of the CD pattern in chitosan acid salt complexes suggests that there is a change in the chiral structure of the polymer system. Some physical properties and surface morphology were analyzed by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetry (TG) and scanning electron microscopy (SEM). Optical properties of chitosan derivatives are evaluated by photoluminescence (PL) spectroscopy which showed red shift. The introduction of acid moieties into chitosan increases the solubility in most of the organic solvents, which opens new perspectives for the employment of chitosan-based biohybrid in biomedical applications.  相似文献   

14.
The controlled graft modification of chitosan has first been achieved by nitroxide-mediated polymerization using chitosan-TEMPO macroinitiator. Chitosan-TEMPO macroinitiator was obtained from the (60)Co gamma-ray irradiation of N-phthaloylchitosan and 4-hydroxy-TEMPO in DMF under argon atmosphere. The graft copolymers were characterized by (1)H nuclear magnetic resonance ((1)H NMR), Fourier transform infrared spectrometer (FT-IR), X-ray powder diffractometer (XRD) and high performance particle sizer (HPPS). The results indicate that the graft copolymers were successfully synthesized and that the graft polymerization was well controlled by the nitroxide-mediated process. The size distribution of chitosan-g-polystyrene in benzene is very narrow, which may be associated with the "well-defined" polystyrene (PSt) onto chitosan from nitroxide-mediated polymerization. This work provides a new method to prepare chitosan grafting copolymers with controlled molecular weights and "well-defined" structures.  相似文献   

15.
In this study, we synthesized a novel water-soluble low molecular chitosan (LMC) derivative through Vilsmeier reaction and reductive amination reaction. The derivative was characterized by UV-visible spectroscopy, 1H NMR, FTIR and SEM techniques. The results showed that the derivative effectively reduced the cell viability rate, inhibited cell metastasis, induced cell apoptosis and dissipated mitochondrial membrane potential (ΔΨm). Moreover, the antitumor activity was strengthened with the increase of the degree of substitution of tanshinone I (TanI). These findings provided important support for developing new water-soluble antitumor agent and expand the scope of application of LMC.  相似文献   

16.
A new biodegradable copolymer of chitosan and poly(p-dioxanone) (PPDO) was prepared through a protection-graft-deprotection procedure using N-phthaloyl-chitosan as an intermediate. PPDO terminated with the isocyanate group was allowed to react with hydroxyl groups of the N-phthaloyl-protected chitosan, and then the phthaloyl group was cleaved to give the free amino groups. The length of PPDO graft chains can be controlled easily by using the prepolymers of PPDO with different molecular weights. The resulting products were thoroughly characterized with FT-IR, 1H NMR, TG, DSC, SEM, and WAXD. The copolymers were used as drug carriers for sinomenine (7,8-didehydro-4-hydroxy-3,7-dimethoxy-17-methyl-9α,13α,14α-morphinan-6-one) and these exhibited a significant controlled drug-releasing behavior whether in artificial gastric juice or in neutral phosphate buffer solution.  相似文献   

17.
Aminoethyl modified chitosan derivatives (AEMCSs) with different molecular weight (Mw) were synthesized by grafting aminoethyl group on different molecular weight chitosans and chitooligosaccharide. FTIR, (1)H NMR, (13)C NMR, elemental analysis and potentiometric titration results showed that branched polyethylimine chitosan was synthesized. Clinical Laboratory Standard Institute (CLSI) protocols were used to determine MIC for Gram-negative strain of Escherichia coli under different pH. The antibacterial activity of the derivatives was significantly improved compared with original chitosans, with MIC values against E. coli varying from 4 to 64 μg/mL depending on different Mw and pH. High molecular weight seems to be in favor of stronger antibacterial activity. At pH 7.4, derivatives with Mw above 27 kDa exhibited equivalent antibacterial activity (16 μg/mL), while oligosaccharide chitosan derivative with lower Mw (~1.4 kDa) showed decreased MIC of 64 μg/mL. The effect of pH on antibacterial activity is more complicated. An optimal pH for HAEMCS was found around 6.5 to give MIC as low as 4 μg/mL, while higher or lower pH compromised the activity. Cell integrity assay and SEM images showed evident cell disruption, indicating membrane disruption may be one possible mechanism for antibacterial activity.  相似文献   

18.
The objective of this research was to improve the solubility of chitosan at neutral or basic pH using the Maillard-type reaction method. To prepare the water-soluble chitosans, various chitosans and saccharides were used under various operating conditions. Biological and physicochemical properties of the chitosan-saccharide derivatives were investigated as well. Results indicated that the solubility of modified chitosan is significantly greater than that of native chitosan, and the chitosan-maltose derivative remained soluble when the pH approached 10. Among chitosan-saccharide derivatives, the solubility of chitosan-fructose derivative was highest at 17.1 g/l. Considering yield, solubility and pH stability, the chitosan-glucosamine derivative was deemed the optimal water-soluble derivative. Compared with the acid-soluble chitosan, the chitosan-glucosamine derivative exhibited high chelating capacity for Zn(2+), Fe(2+) and Cu(2+) ions. Relatively high antibacterial activity against Escherichia coli and Staphylococcus aureus was noted for the chitosan-glucosamine derivative as compared with native chitosan. Results suggest that the water-soluble chitosan produced using the Maillard reaction may be a promising commercial substitute for acid-soluble chitosan.  相似文献   

19.
Novel biodegradable hydrogels by photocrosslinking macromers based on chitosan derivative are reported. Photocrosslinkable macromers, a water-soluble (methacryloyloxy) ethyl carboxyethyl chitosan were prepared by Michael-addition reaction between chitosan and ethylene glycol acrylate methacrylate. The macromers were characterized by Fourier transform infrared spectroscopy, (1)H NMR and (13)C NMR. Hydrogels were fabricated by exposing aqueous solutions of macromers with 0.1% (w/v) photoinitiator to UV light irradiation, and their swelling kinetics as well as degradation behaviors was evaluated. The results demonstrated that the degradation rates were affected strongly by crosslinking density. The hydrogel was compatible to Vero cells, not exhibiting significant cytotoxicity. Cell culture assay also demonstrated that the hydrogels were good in promoting the cell attachment and proliferation, showing their potential as tissue engineering scaffolds.  相似文献   

20.
Yu H  Wang W  Chen X  Deng C  Jing X 《Biopolymers》2006,83(3):233-242
A novel synthetic approach to biodegradable amphiphilic copolymers based on poly (epsilon-caprolactone) (PCL) and chitosan was presented, and the prepared copolymers were used to prepare nanoparticles successfully. The PCL-graft-chitosan copolymers were synthesized by coupling the hydroxyl end-groups on preformed PCL chains and the amino groups present on 6-O-triphenylmethyl chitosan and by removing the protective 6-O-triphenylmethyl groups in acidic aqueous solution. The PCL content in the copolymers can be controlled in the range of 10-90 wt %. The graft copolymers were thoroughly characterized by 1H NMR, 13C NMR, FT-IR and DSC. The nanoparticles made from the graft copolymers were investigated by 1H NMR, DLS, AFM and SEM measurements. It was found that the copolymers could form spherical or elliptic nanoparticles in water. The amount of available primary amines on the surface of the prepared nanoparticles was evaluated by ninhydrin assay, and it can be controlled by the grafting degree of PCL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号