首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We cloned, expressed, and purified the hdeB gene product, which belongs to the hdeAB acid stress operon. We extracted HdeB from bacteria by the osmotic-shock procedure and purified it to homogeneity by ion-exchange chromatography and hydroxyapatite chromatography. Its identity was confirmed by mass spectrometry analysis. HdeB has a molecular mass of 10 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which matches its expected molecular mass. We purified the acid stress chaperone HdeA in parallel in order to compare the two chaperones. The hdeA and hdeB mutants both display reduced viability upon acid stress, and only the HdeA/HdeB expression plasmid can restore their viability to close to the wild-type level, suggesting that both proteins are required for optimal protection of the bacterial periplasm against acid stress. Periplasmic extracts from both mutants aggregate at acidic pH, suggesting that HdeA and HdeB are required for protein solubilization. At pH 2, the aggregation of periplasmic extracts is prevented by the addition of HdeA, as previously reported, but is only slightly reduced by HdeB. At pH 3, however, HdeB is more efficient than HdeA in preventing periplasmic-protein aggregation. The solubilization of several model substrate proteins at acidic pH supports the hypothesis that, in vitro, HdeA plays a major role in protein solubilization at pH 2 and that both proteins are involved in protein solubilization at pH 3. Like HdeA, HdeB exposes hydrophobic surfaces at acidic pH, in accordance with the appearance of its chaperone properties at acidic pH. HdeB, like HdeA, dissociates from dimers at neutral pH into monomers at acidic pHs, but its dissociation is complete at pH 3 whereas that of HdeA is complete at a more acidic pH. Thus, we can conclude that Escherichia coli possesses two acid stress chaperones that prevent periplasmic-protein aggregation at acidic pH.  相似文献   

3.
4.
5.
The phospholipid composition of the membrane and transporter structure control the subcellular location and function of osmosensory transporter ProP in Escherichia coli. Growth in media of increasing osmolality increases, and entry to stationary phase decreases, the proportion of phosphatidate in anionic lipids (phosphatidylglycerol (PG) plus cardiolipin (CL)). Both treatments increase the CL:PG ratio. Transporters ProP and LacY are concentrated with CL (and not PG) near cell poles and septa. The polar concentration of ProP is CL-dependent. Here we show that the polar concentration of LacY is CL-independent. The osmotic activation threshold of ProP was directly proportional to the CL content of wild type bacteria, the PG content of CL-deficient bacteria, and the anionic lipid content of cells and proteoliposomes. CL was effective at a lower concentration in cells than in proteoliposomes, and at a much lower concentration than PG in either system. Thus, in wild type bacteria, osmotic induction of CL synthesis and concentration of ProP with CL at the cell poles adjust the osmotic activation threshold of ProP to match ambient conditions. ProP proteins linked by homodimeric, C-terminal coiled-coils are known to activate at lower osmolalities than those without such structures and coiled-coil disrupting mutations raise the osmotic activation threshold. Here we show that these mutations also prevent polar concentration of ProP. Stabilization of the C-terminal coiled-coil by covalent cross-linking of introduced Cys reverses the impact of increasing CL on the osmotic activation of ProP. Association of ProP C termini with the CL-rich membrane at cell poles may raise the osmotic activation threshold by blocking coiled-coil formation. Mutations that block coiled-coil formation may also block association of the C termini with the CL-rich membrane.  相似文献   

6.
Smith MN  Kwok SC  Hodges RS  Wood JM 《Biochemistry》2007,46(11):3084-3095
Transporter ProP of Escherichia coli senses extracellular osmolality and responds by mediating cytoplasmic accumulation of organic solutes such as proline. Lesions at the proQ locus reduce ProP activity in vivo. ProQ was previously purified and characterized. Homology modeling predicted that ProQ possesses an alpha-helical N-terminal domain (residues 1-130) and a beta-sheet C-terminal domain (residues 181-232) connected by an unstructured linker. In this work, we tested the structural model for ProQ, explored the solubility and folding of full length ProQ and its domains in diverse buffers, and tested the impacts of the putative ProQ domains on ProP activity in vivo. Limited tryptic proteolysis of ProQ revealed protease resistant fragments corresponding to the predicted N-terminal and C-terminal domains. Polypeptides corresponding to the predicted N- and C-terminal domains could be overexpressed and purified to near homogeneity using nickel affinity, size exclusion and reversed phase chromatographies. Circular dichroism spectroscopy of the purified proteins revealed that the N-terminal domain was predominantly alpha-helical, whereas the C-terminal domain was predominantly beta-sheet, as predicted. The domains were soluble and folded in neutral buffers containing 0.6 M NaCl. The N-terminal domain was soluble and folded in 0.1 M MES (2-[N-morpholino]-ethane sulfonic acid) at pH 5.6. Despite high solubilities, the proteins were not well folded in Na citrate (0.1 M, pH 2.3). The ProQ domains and the linker were expressed at physiological levels, singly and in combination, in bacteria lacking the chromosomal proQ locus. Among these proteins, the N-terminal domain could partially complement the proQ deletion. The full length protein and a variant lacking only the linker restored full activity of the ProP protein.  相似文献   

7.
Diges CM  Uhlenbeck OC 《The EMBO journal》2001,20(19):5503-5512
Escherichia coli DbpA is a member of the DEAD/H family of proteins which has been shown to have robust ATPase activity only in the presence of a specific region of 23S rRNA. A series of bimolecular RNA substrates were designed based on this activating region of rRNA and used to demonstrate that DbpA is also a non-processive, sequence-specific RNA helicase. The high affinity of DbpA for the RNA substrates allowed both single and multiple turnover helicase assays to be performed. Helicase activity of DbpA is dependent on the presence of ATP or dATP, the sequence of the loop of hairpin 92 of 23S rRNA and the position of the substrate helix with respect to hairpin 92. This work indicates that certain RNA helicases require particular RNA structures in order for optimal unwinding activity to be observed.  相似文献   

8.
9.
The ribosome is a highly dynamic ribonucleoprotein machine. During assembly and during translation the ribosomal RNAs must routinely be prevented from falling into kinetic folding traps. Stable occupation of these trapped states may be prevented by proteins with RNA chaperone activity. Here, ribosomal proteins from the large (50S) ribosome subunit of Escherichia coli were tested for RNA chaperone activity in an in vitro trans splicing assay. Nearly a third of the 34 large ribosomal subunit proteins displayed RNA chaperone activity. We discuss a possible role of this function during ribosome assembly and during translation.  相似文献   

10.
RNA 2',3'-cyclic phosphate ends play important roles in RNA metabolism as substrates for RNA ligases during tRNA restriction-repair and tRNA splicing. Diverse bacteria from multiple phyla encode a two-component RNA repair cassette, comprising Pnkp (polynucleotide kinase-phosphatase-ligase) and Hen1 (RNA 3'-terminal ribose 2'-O-methyltransferase), that heals and then seals broken tRNAs with 2',3'-cyclic phosphate and 5'-OH ends. The Pnkp-Hen1 repair operon is absent in the majority of bacterial species, thereby raising the prospect that other RNA repair systems might be extant. A candidate component is RNA 3'-phosphate cyclase, a widely distributed enzyme that transforms RNA 3'-monophosphate termini into 2',3'-cyclic phosphates but cannot seal the ends it produces. Escherichia coli RNA cyclase (RtcA) is encoded in a σ(54)-regulated operon with RtcB, a protein of unknown function. Taking a cue from Pnkp-Hen1, we purified E. coli RtcB and tested it for RNA ligase activity. We report that RtcB per se seals broken tRNA-like stem-loop structures with 2',3'-cyclic phosphate and 5'-OH ends to form a splice junction with a 2'-OH, 3',5'-phosphodiester. We speculate that: (i) RtcB might afford bacteria a means to recover from stress-induced RNA damage; and (ii) RtcB homologs might catalyze tRNA repair or splicing reactions in archaea and eukarya.  相似文献   

11.
Spot 42 RNA of Escherichia coli, a 109-nucleotide RNA that influences the level of DNA polymerase I, has an AUG triplet preceded by a purine-rich potential ribosome-binding site and is followed by a short (14-triplet) potential open reading frame. Although the RNA bound to ribosomes, it did so inefficiently and nonproductively. When fused to lacZ sequences, spot RNA did not support the synthesis of beta-galactosidase. Also, the biological effects of spot 42 RNA were not altered by mutation of the tyrosine UAU codon to the chain termination UAG. We conclude that the effects of spot 42 RNA are mediated by the RNA itself and not by a spot 42 RNA-encoded peptide.  相似文献   

12.
13.
A new type of Escherichia coli mutant which shows increased sensitivity to methyl methane sulfonate but not to UV light or to gamma rays was isolated after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. The mutant is unable to reactivate phage lambdavir or double-stranded phiX174 DNA (replicative form) that had been treated with methyl methane sulfonate. The mutant is sensitive to other alkylating agents, such as ethyl methane sulfonate, mitomycin C, and N-methyl-N'-nitro-N-nitrosoguanidine, as well. It grows normally and exhibits almost normal recombination proficiency. The mutant possesses normal levels of DNA polymerase I, exonuclease I, exonuclease V, endonuclease specific for methyl methane sulfonate-treated DNA, and 3-methyladenine-DNA glycosidase activities. The genetic locus responsible has been named alk and is located near his on the chromosome.  相似文献   

14.
Wettich A  Biebricher CK 《Biochemistry》2001,40(11):3308-3315
An RNA that replicates with core RNA polymerase from E. coli and the substrates ATP, CTP, ITP, and UTP, was selected from a random poly(A,U,I,C) library and named EcorpI. Another replicating RNA, EcorpG, was obtained by template-free incubation of holo RNA polymerase and the substrates ATP, CTP, GTP, and UTP. Both RNA species showed typical autocatalytic RNA amplification profiles with replication rates in the range of other RNA replicons. The replication products were heterogeneous in length; the different lengths appeared to be different replication intermediates. Both RNA were single-stranded with much internal base-pairing but low melting points. Their sequences were composed by permutations of certain sequence motives in both polarities separated by short oligo(A) and oligo(U) clusters. There was evidence for 3'-terminal elongation on an intramolecular template. No double-stranded RNA was found, even though base-pairing is certainly the underlying basis of the replication process. The reaction was highly sensitive: a few RNA strands were sufficient to trigger an amplification avalanche.  相似文献   

15.
We show here the involvement of the molecular chaperone DnaK from Escherichia coli in the in vivo alpha-complementation of the beta-galactosidase. In the dnaK756(Ts) mutant, alpha-complementation occurs when the organisms are grown at 30 degrees C but not at 37 or 40 degrees C, although these temperatures are permissive for bacterial growth. Plasmid-driven expression of wild-type dnaK restores the alpha-complementation in the mutant but also stimulates it in a dnaK(+) strain. In a mutant which contains a disrupted dnaK gene (DeltadnaK52::Cm(r)), alpha-complementation is also impaired, even at 30 degrees C. This observation provides an easy and original phenotype to detect subtle functional changes in a protein such as the DnaK756 chaperone, within the physiologically relevant temperature.  相似文献   

16.
17.
18.
Proteins with RNA chaperone activity are able to promote folding of RNA molecules by loosening their structure. This RNA unfolding activity is beneficial when resolving misfolded RNA conformations, but could be detrimental to RNAs with low thermodynamic stability. In order to test this idea, we constructed various RNAs with different structural stabilities derived from the thymidylate synthase (td) group I intron and measured the effect of StpA, an Escherichia coli protein with RNA chaperone activity, on their splicing activity in vivo and in vitro. While StpA promotes splicing of the wild-type td intron and of mutants with wild-type-like stability, splicing of mutants with a lower structural stability is reduced in the presence of StpA. In contrast, splicing of an intron mutant, which is not destabilized but which displays a reduced population of correctly folded RNAs, is promoted by StpA. The sensitivity of an RNA towards StpA correlates with its structural stability. By lowering the temperature to 25°C, a temperature at which the structure of these mutants becomes more stable, StpA is again able to stimulate splicing. These observations clearly suggest that the structural stability of an RNA determines whether the RNA chaperone activity of StpA is beneficial to folding.  相似文献   

19.
Membrane transporter ProP from Escherichia coli senses extracellular osmolality and responds by mediating the uptake of osmoprotectants such as glycine betaine when osmolality is high. Earlier EPR and NMR studies showed that a peptide replica of the cytoplasmic ProP carboxyl terminus (residues D468-R497) forms a homodimeric, antiparallel, alpha-helical coiled coil in vitro stabilized by electrostatic interactions involving R488. Amino acid replacement R488I disrupted coiled-coil formation by the ProP peptide, elevated the osmolality at which ProP became active, and rendered the osmolality response of ProP transient. In the present study, either E480 or K473 was replaced with cysteine (Cys) in ProP, a Cys-less, fully functional, histidine-tagged ProP variant, to use Cys-specific cross-linking approaches to determine if antiparallel coiled-coil formation and dimerization of the intact protein occur in vivo. The Cys at positions 480 would be closer in an antiparallel dimer than those at positions 473. These replacements did not disrupt coiled-coil formation by the ProP peptide. Partial homodimerization of variant ProP-E480C could be demonstrated in vivo and in membrane preparations via Cys-specific cross-linking with dithiobis(maleimidoethane) or by Cys oxidation to cystine by copper phenanthroline. In contrast, these reagents did not cross-link ProP with Cys at position 133 or 241. Cross-linking of ProP with Cys at position 473 was limited and occurred only if ProP was overexpressed, consistent with an antiparallel orientation of the coiled coil in the intact protein in vivo. Although replacement E480C did not alter transporter activity, replacement K473C reduced the extent and elevated the threshold for osmotic activation. K473 may play a role in ProP structure and function that is not reflected in altered coiled-coil formation by the corresponding peptide. Substitution R488I affected the activities of ProP-(His)(6), ProP-E480C, and ProP-K473C as it affected the activity of ProP. Surprisingly, it did not eliminate cross-linking of Cys at position 480, and it elevated cross-linking at position 473, even when ProP was expressed at physiological levels. This suggested that the R488I substitution may have changed the relative orientation of the C-termini within the dimeric protein from antiparallel to parallel, resulting in only transient osmotic activation. These results suggest that ProP is in monomer-dimer equilibrium in vivo. Dimerization may be mediated by C-terminal coiled-coil formation and/or by interactions between other structural domains, which in turn facilitate C-terminal coiled-coil formation. Antiparallel coiled-coil formation is required for activation of ProP at low osmolality.  相似文献   

20.
The decrease in proline transport by the proline porter ProP in a ΔproQ strain has been well documented; however, the reason for this phenotype remains undefined. Previous studies have speculated that ProQ facilitates translation of proP mRNA. Here, we demonstrate that ProQ is enriched in the polysome fractions of sucrose gradient separations of E. coli lysates and the 30S fractions of lysates separated under conditions causing ribosomal subunit dissociation. Thus, ProQ is a bona fide ribosome associated protein. Analysis of proQ constructs lacking predicted structural domains implicates the N-terminal domain in ribosome association. Association with the ribosome appears to be mediated by an interaction with the mRNA being translated, as limited treatment of lysates with Micrococcal Nuclease maintains ribosome integrity but disrupts ProQ localization with polysomes. ProQ also fails to robustly bind to mRNA-free 70S ribosomes in vitro. Interestingly, deletion of proP does not disrupt the localization of ProQ with translating ribosomes, and deletion of proP in combination with the proU operon has no effect on ProQ localization. We also demonstrate that ProQ is necessary for robust biofilm formation, and this phenotype is independent of ProP. Binding studies were carried out using tryptophan fluorescence and in vitro transcribed proP mRNAs. proP is transcribed from two differentially regulated promoters, and ProQ interacts with proP mRNA transcribed from both promoters, as well as a control mRNA with similar affinities. In total, these data suggest that ProQ is positioned to function as a novel translational regulator, and its cellular role extends beyond its effects on proline uptake by ProP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号