首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 986 毫秒
1.
2.
3.
4.
When PHA-activated normal responder cells (R cells) were cocultured with mononuclear cells (MN cells) which had been preincubated for 48 hr in medium alone (C cells) an enhanced proliferative response was observed. This enhancement was only obtained when the R cells were cultured with allogeneic C cells or when PHA was in the cocultures for the entire culture period. This effect was due to greater production of interleukin 2 (IL-2) by irradiated C cells in the presence of allogeneic or mitogenic stimulation. Con A-treated mononuclear cells (S cells) cultured with PHA-activated allogeneic or autologous responder cells showed reduced [3H]thymidine incorporation and IL-2 production as compared to activated R cells alone. Glutaraldehyde-treated S cells (which retained the ability to absorb IL-2) did not affect the proliferative response or IL-2 production by the R cells, indicating that passive absorption of IL-2 was not entirely responsible for suppression induced by S cells. S cells, pretreated with IL-2, still inhibited R-cell activity. These results show that Con A-treated MN cells suppressed or prevented [3H]thymidine incorporation by actively inhibiting IL-2 production.  相似文献   

5.
6.
7.
To assess the role of Bcl-X(L) and its splice derivative, Bcl-X(S), in staurosporine-induced cell death, we used a dopaminergic cell line, MN9D, transfected with bcl-xL (MN9D/Bcl-X(L)), bcl-xS (MN9D/Bcl-X(S)), or control vector (MN9D/Neo). Only 8.6% of MN9D/Neo cells survived after 24 h of 1 microM staurosporine treatment. Caspase activity was implicated because a caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-fmk), attenuated staurosporine-induced cell death. Bcl-X(L) rescued MN9D cells from death (89.4% viable cells), whereas Bcl-X(S) had little or no effect. Bcl-X(L) prevented morphologically apoptotic changes as well as cleavage of poly(ADP-ribose)polymerase (PARP) induced by staurosporine. It is interesting that a small Bax-immunoreactive protein appeared 4-8 h after PARP cleavage in MN9D/Neo cells. The appearance of the small Bax-immunoreactive protein, however, may be cell type-specific as it was not observed in PC12 cells after staurosporine treatment. The sequential cleavage of PARP and the appearance of the small Bax-immunoreactive protein in MN9D cells were blocked either by Z-VAD-fmk or by Bcl-X(L). Thus, our present study suggests that Bcl-X(L) but not Bcl-X(S) prevents staurosporine-induced apoptosis by inhibiting the caspase activation that may be directly or indirectly responsible for the appearance of the small Bax-immunoreactive protein in some types of neurons.  相似文献   

8.
9.
10.
Recent studies suggest that Bcl-2 may play an active role in neuronal differentiation. Here, we showed a marked neurite extension in MN9D dopaminergic neuronal cells overexpressing Bcl-2 (MN9D/Bcl-2) or Bcl-X(L) (MN9D/Bcl-X(L)). We found a specific increase in phosphorylation of c-Jun N-terminal kinase (JNK) accompanied by neurite extension in MN9D/Bcl-2 but not in MN9D/Bcl-X(L) cells. Consequently, neurite extension in MN9D/Bcl-2 but not in MN9D/Bcl-X(L) cells was suppressed by treatment with SP600125, a specific inhibitor of JNK. Inhibition of other mitogen-activated protein kinases-including p38 and extracellular signal-regulated kinase-did not affect Bcl-2-mediated neurite extension in MN9D cells. While the expression levels of such protein markers of maturation as SNAP-25, phosphorylated NF-H, and neuron-specific enolase were increased in MN9D/Bcl-2 cells, only upregulation of SNAP-25 was inhibited after treatment with SP600125. Thus, the JNK signal activated by Bcl-2 seems to play an important role during morphological and certain biochemical differentiation in cultured dopaminergic neurons.  相似文献   

11.
12.
少突胶质细胞主要围绕神经元轴突形成髓鞘,能几十倍地加快神经冲动的传导速度,它的异常会严重影响人的行动和健康,因此对其发育的研究显得极为重要。最近的研究显示脊髓中绝大部分少突胶质细胞和运动神经元先后由相同的神经前体细胞区产生。然而,对脊髓神经干细胞如何有秩序地先后产生这两种不同细胞的具体机制还不清楚。基于近年来的研究进展,对运动神经元和少突胶质细胞发育上的关系以及其发育命运转变的机制进行探讨。  相似文献   

13.
14.
Y Ge  Y Xu  W Sun  Z Man  L Zhu  X Xia  L Zhao  Y Zhao  X Wang 《Gene》2012,508(2):157-164
Toll-like receptors (TLRs) and the nuclear factor-kappa B (NF-κB) signaling transduction pathway play important roles in the pathogenesis of several chronic inflammatory diseases, but its function in oral lichen planus (OLP) remains unclear. In this study, we examined the expression of TLR4 and NF-κB-p65 and inflammatory cytokines TNF-α and IL-1β by immunohistochemistry in OLP tissues, and found that TLR4 and NF-κB-p65 were significantly upregulated in OLP compared to normal oral mucosa (P<0.05). We used keratinocytes HaCaT stimulated with lipopolysaccharide (LPS) to simulate the local OLP immune environment to some extent. RT-PCR and immunoblotting analyses showed significant activation of TLR4 and NF-κB-p65 in the circumstance of LPS-induced inflammatory response. The high expression of TLR4 and NF-κB-p65 are correlated with expression of cytokines TNF-α and IL-1β (P<0.05). We further showed that NF-κB could act as an anti-apoptotic molecule in OLP. We conclude that TLR4 and the NF-κB signaling pathway may interact with the perpetuation of OLP. Steroids and cyclosporine are effective in the treatment of symptomatic OLP. However, there was some weak evidence for the mechanism over Dexamethasone (DeX) and Cyclosporine A (CsA) for the palliation of symptomatic OLP. In the present study, we found that Dexamethasone and Cyclosporine A negatively regulated NF-κB signaling pathway under LPS simulation in HaCaT cells by inhibiting TLR4 expression, on the other hand, Cyclosporine A could inhibit HaCaT cell proliferation by the induction of the apoptosis of HaCaT cells to protect OLP from the destruction of epidermal cells effectively.  相似文献   

15.
16.
Endothelial nitric oxide synthase (eNOS) is responsible for maintaining systemic blood pressure, vascular remodeling and angiogenesis. In addition to producing NO, eNOS can also generate superoxide (O2 -.) in the absence of the cofactor tetrahydrobiopterin (BH4). Previous studies have shown that bovine eNOS serine 1179 (Serine 1177/human) phosphorylation critically modulates NO synthesis. However, the effect of serine 1179 phosphorylation on eNOS superoxide generation is unknown. Here, we used the phosphomimetic form of eNOS (S1179D) to determine the effect of S1179 phosphorylation on superoxide generating activity, and its sensitivity to regulation by BH4, Ca2+, and calmodulin (CAM). S1179D eNOS exhibited significantly increased superoxide generating activity and NADPH consumption compared to wild-type eNOS (WT eNOS). The superoxide generating activities of S1179D eNOS and WT eNOS did not differ significantly in their sensitivity to regulation by either Ca2+ or CaM. The sensitivity of the superoxide generating activity of S1179D eNOS to inhibition by BH4 was significantly reduced compared to WT eNOS. In eNOS-overexpressing 293 cells, BH4 depletion with 10mM DAHP for 48 hours followed by 50ng/ml VEGF for 30 min to phosphorylate eNOS S1179 increased ROS accumulation compared to DAHP-only treated cells. Meanwhile, MTT assay indicated that overexpression of eNOS in HEK293 cells decreased cellular viability compared to control cells at BH4 depletion condition (P<0.01). VEGF-mediated Serine 1179 phosphorylation further decreased the cellular viability in eNOS-overexpressing 293 cells (P<0.01). Our data demonstrate that eNOS serine 1179 phosphorylation, in addition to enhancing NO production, also profoundly affects superoxide generation: S1179 phosphorylation increases superoxide production while decreasing sensitivity to the inhibitory effect of BH4 on this activity.  相似文献   

17.
We performed the in vitro micronucleus (MN) test on 2-[2-(acetylamino)-4-[bis(2-methoxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-1) and 2-[2-(acetylamino)-4-[N-(2-cyanoethyl)-ethylamino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-2), which are newly identified water pollutants from the Nishitakase river in Kyoto, Japan, and on their possible mother compounds (AZO DYE) and intermediates (non-ClPBTAs). We tested these compounds in the absence and presence of S9 mix in two Chinese hamster cell lines CHL and V79-MZ and scored MN, polynuclear and karyorrhectic (PN), and mitotic (M) cells. PBTA-2 in the absence of S9 mix induced the strongest responses in both cell lines. It was also a strong inducer of binucleate cells in PN cells in both cell lines, which suggested that it induced polyploidy. PBTA-1 showed clear positive results only in the absence of S9 mix and only in V79-MZ cells, inducing aneuploidy. In CHL cells AZO DYE-1 significantly induced MN cells in the presence of S9 mix, and AZO DYE-2 induced MN and PN cells, including binucleate cells and cells with a multilobed nucleus, in the absence of S9 mix. In V79-MZ cells, AZO DYE-1 and -2 induced primarily M cells in the presence of S9 mix. 9% of the M cells treated with 50 microg/ml AZO DYE-1 showed endoreduplication. AZO DYE-2 at 200 microg/ml condensed the chromatin in 100% of the cells. The non-ClPBTAs were a bit more cytotoxic than the other compounds and induced a slight increase in MN cells in both cell lines. Some of the chemicals tested induced a characteristic karyomorphology that might reflect abnormal cell division. Abnormalities of cell division could be detected in PN and M cells as well as in MN cells. Structure-activity relationships have also been discussed.  相似文献   

18.
How synaptic specificity is molecularly coded in target cells is a long-standing question in neuroscience. Whereas essential roles of several target-derived attractive cues have been shown, less is known about the role of repulsion by nontarget cells. We conducted single-cell microarray analysis of two neighboring muscles (M12 and M13) in Drosophila, which are innervated by distinct motor neurons, by directly isolating them from dissected embryos. We identified a number of potential target cues that are differentially expressed between the two muscles, including M13-enriched Wnt4. When the functions of Wnt4, or putative receptors Frizzled 2 and Derailed-2 or Dishevelled were inhibited, motor neurons that normally innervate M12 (MN12s) formed smaller synapses on M12 but instead formed ectopic nerve endings on M13. Conversely, ectopic expression of Wnt4 in M12 inhibits synapse formation by MN12s. These results suggest that Wnt4, via Frizzled 2, Derailed-2, and Dishevelled, generates target specificity by preventing synapse formation on a nontarget muscle. Ectopic expression of five other M13-enriched genes, including beat-IIIc and Glutactin, also inhibits synapse formation by MN12s. These results demonstrate an important role for local repulsion in regulating cell-to-cell target specificity.  相似文献   

19.
By sequence analysis we found an amino acid stretch centred on Serine201 matching a stringent CK2 consensus site within the C-terminal, inhibitory domain of Sic1. Here we show by direct mass spectrometry analysis that Sic1, but not a mutant protein whose CK2 phospho-acceptor site has been mutated to alanine, Sic1S201A, is actually phosphorylated in vitro by CK2 on Serine 201. Mutation of Serine 201 alters the coordination between growth and cell cycle progression. A significant increase of average protein content and of the average protein content at the onset of DNA synthesis is observed for exponentially growing cells harbouring the Sic1S201A protein. A strong reduction of the same parameters is observed in cells harbouring Sic1S201E. The deregulated coordination between cell size and cell cycle is also apparent at the level of S-Cdk activity.  相似文献   

20.
Hydrogen sulfide (H(2)S) has recently been recognized as a signaling molecule as well as a cytoprotectant. Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) are well-known as H(2)S-producing enzymes. We recently demonstrated that 3-mercaptopyruvate sulfurtransferase (3MST) along with cysteine aminotransferase (CAT) produces H(2)S in the brain and in vascular endothelium. However, the cellular distribution and regulation of these enzymes are not well understood. Here we show that 3MST and CAT are localized to retinal neurons and that the production of H(2)S is regulated by Ca(2+); H(2)S, in turn, regulates Ca(2+) influx into photoreceptor cells by activating vacuolar type H(+)-ATPase (V-ATPase). We also show that H(2)S protects retinal neurons from light-induced degeneration. The excessive levels of light exposure deteriorated photoreceptor cells and increased the number of TUNEL- and 8-hydroxy-2'-deoxyguanosine (8-OHdG)-positive cells. Degeneration was greatly suppressed in the retina of mice administered with NaHS, a donor of H(2)S. The present study provides a new insight into the regulation of H(2)S production and the modulation of the retinal transmission by H(2)S. It also shows a cytoprotective effect of H(2)S on retinal neurons and provides a basis for the therapeutic target for retinal degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号