首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
李俊  伍晓明 《西北植物学报》2012,32(7):1488-1499
被子植物早期胚胎形态建成是其有性生殖过程中一个重要发育阶段。在这一阶段中,被子植物形体基本特征形成,包括顶-基轴极性建立、不同细胞层分化以及分生组织形成。合子极性直接与顶基细胞命运相关,但其极性产生机理仍然不明。研究表明,WOX家族转录因子、生长素定向运输以及生长素响应应答可能参与了早期顶-基模型建成;辐射对称模型的建立可能由细胞与细胞间相互作用来介导;生长素流可能参与胚胎顶端组织形成。该文对近年来被子植物早期胚胎形态建成过程中的合子极性建立与生长、合子分裂及其顶基细胞的形成、胚根原特化及根极的形成、辐射对称模式及表皮原特化、顶端分生组织特化及子叶起始等方面的研究进展进行了综述。  相似文献   

4.
5.
6.
7.
We have developed a reliable in vitro zygotic embryogenesis system in tobacco. A single zygote of a dicotyledonous plant was able to develop into a fertile plant via direct embryogenesis with the aid of a co-culture system in which fertilized ovules were employed as feeders. The results confirmed that a tobacco zygote could divide in vitro following the basic embryogenic pattern of the Solanad type. The zygote cell wall and directional expansion are two critical points in maintaining apical-basal polarity and determining the developmental fate of the zygote. Only those isolated zygotes with an almost intact original cell wall could continue limited directional expansion in vitro, and only these directionally expanded zygotes could divide into typical apical and basal cells and finally develop into a typical embryo with a suspensor. In contrast, isolated zygote protoplasts deprived of cell walls could enlarge but could not directionally elongate, as in vivo zygotes do before cell division, even when the cell wall was regenerated during in vitro culture. The zygote protoplasts could also undergo asymmetrical division to form one smaller and one larger daughter cell, which could develop into an embryonic callus or a globular embryo without a suspensor. Even cell walls that hung loosely around the protoplasts appeared to function, and were closely correlated with the orientation of the first zygotic division and the apical-basal axis, further indicating the essential role of the original zygotic cell wall in maintaining apical-basal polarity and cell-division orientation, as well as subsequent cell differentiation during early embryo development in vitro.  相似文献   

8.
Asymmetric division of zygote is critical for pattern formation during early embryogenesis in plants and animals. It requires integration of the intrinsic and extrinsic cues prior to and/or after fertilization. How these cues are translated into developmental signals is poorly understood. Here through genetic screen for mutations affecting early embryogenesis, we identified an Arabidopsis mutant, zygotic arrest 1 (zar1), in which zygote asymmetric division and the cell fate of its daughter cells were impaired. ZAR1 encodes a member of the RLK/Pelle kinase family. We demonstrated that ZAR1 physically interacts with Calmodulin and the heterotrimeric G protein Gβ, and ZAR1 kinase is activated by their binding as well. ZAR1 is specifically expressed micropylarly in the embryo sac at eight-nucleate stage and then in central cell, egg cell and synergids in the mature embryo sac. After fertilization, ZAR1 is accumulated in zygote and endosperm. The disruption of ZAR1 and AGB1 results in short basal cell and an apical cell with basal cell fate. These data suggest that ZAR1 functions as a membrane integrator for extrinsic cues, Ca2+ signal and G protein signaling to regulate the division of zygote and the cell fate of its daughter cells in Arabidopsis.  相似文献   

9.
邵文  张宪春  刘保东 《植物研究》2007,27(2):141-144
利用石蜡切片法研究了海金沙胚胎发育过程。合子的第一次分裂面垂直于颈卵器的长轴,产生两个相等的子细胞,靠近颈卵器颈部的营养器官原始细胞和远离颈部的基足原始细胞。前者发育成子代孢子体的营养器官,后者发育成基足。胚胎在32细胞阶段后,第一叶顶端细胞与第一根顶端细胞几乎同时发生。第一叶突出帽状体之后,由第一叶基部保留下来的茎干顶端细胞产生第二叶。据营养器官的形态结构判断,在海金沙胚胎发育中最早出现的营养器官是叶和根。  相似文献   

10.
In angiosperms, a zygote generally divides into an asymmetric two-celled embryo consisting of an apical and a basal cell. This unequal division of the zygote is a putative first step for formation of the apical–basal axis of plants and is a fundamental feature of early embryogenesis and morphogenesis in angiosperms. Because fertilization and subsequent embryogenesis occur in embryo sacs, which are deeply embedded in ovular tissue, in vitro fertilization of isolated gametes is a powerful system to dissect mechanisms of fertilization and post-fertilization events. Rice is an emerging molecular and experimental model plant, however, profile of the first zygotic division within embryo sac and thus origin of apical–basal embryo polarity has not been closely investigated. Therefore, in the present study, the division pattern of rice zygote in planta was first determined accurately by observations employing serial sections of the egg apparatus, zygotes and two-celled embryos in the embryo sac. The rice zygote divides asymmetrically into a two-celled embryo consisting of a statistically significantly smaller apical cell with dense cytoplasm and a larger vacuolated basal cell. Moreover, detailed observations of division profiles of zygotes prepared by in vitro fertilization indicate that the zygote also divides into an asymmetric two-celled embryo as in planta. Such observations suggest that in vitro-produced rice zygotes and two-celled embryos may be useful as experimental models for further investigations into the mechanism and control of asymmetric division of plant zygotes.  相似文献   

11.
12.
InCymbidium sinense, the pattern of embryo development is unusualin that oblique cell divisions result in the formation of severalsuspensor cells prior to the development of the embryo proper.Characteristic changes in microtubular distribution can be foundwithin the zygote and the proembryo during their development.After fertilization, the ellipsoid-shaped zygote has randomlydistributed microtubules within its cytoplasm. As the zygotetakes on a more rounded appearance, microtubules organize intoa dense meshwork. Furthermore, microtubule bundles appear atthe chalazal region of the cell prior to the first mitotic divisionof the zygote. At the preprophase stage of mitosis, a preprophaseband of microtubules appears in the cytoplasm of the zygote.The zygote divides obliquely and unequally and gives rise toan apical cell and a slightly larger basal cell. Many randomly-alignedmicrotubules can be found in the cortex of the basal cell. Theincrease in the abundance of microtubules coincides with theisotropic expansion of the basal cell. The early division ofthe basal cell and subsequent division of the apical cell resultsin the formation of a four-celled embryo, of which three cellsnear the micropylar pole develop as suspensor cells. In thesuspensor cells, the microtubules tend to orient in the samedirection as the long axis of the cell. In addition, prominentmicrotubules can also be found near the adjoining cell wallsof the four-celled embryo. The terminal cell is highly cytoplasmicwith abundant microtubules within the cell. Subsequent divisionsof the terminal cell give rise to additional suspensor cellsand the embryo proper. In the mature embryo, five suspensorcells are usually present; one eventually grows through themicropyle of the inner integument and four grow towards thechalazal pole. The cortical microtubules of suspensor cellsredistribute from a longitudinal to a transverse direction asthey grow towards their respective poles.Copyright 1998 Annalsof Botany Company Embryogenesis, endosperm, microtubules, preprophase band, suspensor cells,Cymbidium sinense(Andr.) Willd.  相似文献   

13.
Gamete fusion activates the egg in animals and plants, and the gamete fusion site on the zygote might provide a possible cue for zygotic development and/or embryonic patterning. In angiosperms, a zygote generally divides into a two-celled proembryo consisting of an apical and a basal cell with different cell fates. This is a putative step in the formation of the apical-basal axis of the proembryo. We observed the positional relationship between the gamete fusion site and the division plane formed by zygotic cleavage using an in vitro fertilization system with rice gametes. There was no relationship between the gamete fusion site and the division plane leading to the two-celled proembryo. Thus, the gamete fusion site on the rice zygote does not appear to function as a determinant for positioning the zygote division plane, and the zygote apparently possesses autonomous potential to establish cell polarity along the apical-basal axis for its first cleavage.Key words: asymmetric division, egg cell, fertilization, gamete fusion, rice, sperm cell, two-celled proembryo, zygote  相似文献   

14.
The asymmetric segregation of cell-fate determinants and the generation of daughter cells of different sizes rely on the correct orientation and position of the mitotic spindle. In the Drosophila embryo, the determinant Prospero is localized basally and is segregated equally to daughters of similar cell size during epidermal cell division. In contrast, during neuroblast division Prospero is segregated asymmetrically to the smaller daughter cell. This simple switch between symmetric and asymmetric segregation is achieved by changing the orientation of cell division: neural cells divide in a plane perpendicular to that of epidermoblast division. Here, by labelling mitotic spindles in living Drosophila embryos, we show that neuroblast spindles are initially formed in the same axis as epidermal cells, but rotate before cell division. We find that daughter cells of different sizes arise because the spindle itself becomes asymmetric at anaphase: apical microtubules elongate, basal microtubules shorten, and the midbody moves basally until it is positioned asymmetrically between the two spindle poles. This observation contradicts the widely held hypothesis that the cleavage furrow is always placed midway between the two centrosomes.  相似文献   

15.
16.
Embryogenesis in transgenic Arabidopsis plants with GFP:mTn, a chimeric fusion of soluble shifted green fluorescent protein and a mouse actin binding domain, was studied. Confocal laser scanning microscopy was used to determine patterns of formation and cellular responses during asymmetric cell division. Before such cells divide, the nucleus moves to the position where new cell walls are to be formed. The apicalbasal axis of the embryo develops mainly at the zygote to octant stage, and these events are associated with asymmetric divisions of the zygote and hypophyseal cells. Formation of the radial axis is established from the dermatogen to the globular-stage embryo via tangential cell division within the upper tiers. Bilateral symmetry of the embryo primarily happens at the triangular stage through zig-zag cell divisions of initials of the cotyledonary primordia. All stages of embryogenesis are described in detail here.  相似文献   

17.
In Arabidopsis embryogenesis, the primary root meristem originates from descendants of both the apical and the basal daughter cell of the zygote. We have isolated a mutant of a new gene named BODENLOS (BDL) in which the primary root meristem is not formed whereas post-embryonic roots develop and bdl seedlings give rise to fertile adult plants. Some bdl seedlings lacked not only the root but also the hypocotyl, thus resembling monopteros (mp) seedlings. In addition, bdl seedlings were insensitive to the auxin analogue 2,4-D, as determined by comparison with auxin resistant1 (axr1) seedlings. bdl embryos deviated from normal development as early as the two-cell stage at which the apical daughter cell of the zygote had divided horizontally instead of vertically. Subsequently, the uppermost derivative of the basal daughter cell, which is normally destined to become the hypophysis, divided abnormally and failed to generate the quiescent centre of the root meristem and the central root cap. We also analysed double mutants. bdl mp embryos closely resembled the two single mutants, bdl and mp, at early stages, while bdl mp seedlings essentially consisted of hypocotyl but did form primary leaves. bdl axr1 embryos approached the mp phenotype at later stages, and bdl axr1 seedlings resembled mp seedlings. Our results suggest that BDL is involved in auxin-mediated processes of apical-basal patterning in the Arabidopsis embryo.  相似文献   

18.
The ultrastructure and composition of the egg, zygote, and young embryo of Capsella bursa-pastoris were examined. The egg is a highly polarized cell; one-half to one-third of the micropylar end is filled with a large vacuole while the chalazal end contains the nucleus and much of the cytoplasm of the cell. The wall which surrounds the cell is incomplete at the chalazal end. Ribosomes fill the cytoplasm and show little or no aggregation into polysomes. The structure of the nucleolus suggests that ribosomes are not being produced. Following fertilization and the formation of the zygote, the cell decreases slightly in volume as the large central vacuole becomes smaller. The zygote soon increases in size as the small chalazal vacuoles present before fertilization begin to enlarge. The dictyosomes become active and a continuous wall forms around the zygote. Aggregation of the ribosomes begins and numerous polysomes are formed. Before division of the zygote all plasmodesmata between the zygote and the surrounding cells are lost. The first division of the zygote is unequal as a result of its marked polarity. A large basal cell and a small terminal cell are produced. The basal cell appears to contain more protein, RNA, carbohydrate, and cell organelles than the terminal cell. Ribosomal aggregation is even more pronounced at this stage. Starch accumulates in the plastids. Numerous plasmodesmata are present between the terminal and basal cells but there are no connections between the endosperm or other cells. The basal cell divides next to give rise to a three-celled linear embryo consisting of the basal cell, the suspensor cell, and the terminal cell. The terminal cell stains more intensely for protein and RNA as a result of increased numbers of ribosomes. Starch in all the cells is about equal and reaches a maximum in the embryo at this stage.  相似文献   

19.
20.
为探讨多花地宝兰(Geodorum recurvum)胚胎发育的系统分类学意义,采用石蜡制片法对多花地宝兰胚囊和胚的发育进行解剖学观察。结果表明,在开花前,多花地宝兰胚珠原基发育缓慢,开花授粉后胚珠原基快速发育成"树状二杈分枝结构",随后在"分枝结构"末端形成孢原细胞,开始胚囊发育。多花地宝兰的胚囊发育属于单孢蓼型胚囊,胚珠具有双层珠被。孢原细胞形成后,经过细胞膨大延长发育形成胚囊母细胞,胚囊母细胞经过减数分裂形成线性四分体,在珠孔端形成1个功能大孢子,功能大孢子经过3次有丝分裂形成8核胚囊。多花地宝兰的胚发育具有藜型和紫苑型两种方式。双受精完成后,多花地宝兰合子进行一次橫裂后形成基细胞和顶细胞;基细胞经过多次分裂形成细胞团,细胞团中的细胞向不同方向膨大延长形成多个胚柄细胞;顶细胞有两种分裂方式,一种是横裂形成藜型胚,一种是纵裂形成紫苑型胚。因此,推测多花地宝兰在兰科植物系统分类学上属于较为原始种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号