首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biocompatible photoresponsive materials are of interest for targeted drug delivery, tissue engineering, 2D and 3D protein patterning, and other biomedical applications. We prepared light degradable hydrogels using a natural alginate polysaccharide cross-linked with iron(III) cations. The "hard" iron(III) cations used to cross-link the alginate hydrogel were found to undergo facile photoreduction to "soft" iron(II) cations in the presence of millimolar concentrations of sodium lactate. The "soft" iron(II) cations have a decreased ability to cross-link the alginate which results in dissolution of the hydrogel and the formation of a homogeneous solution. The photodegradation is done using long wave UV or visible light at neutral pH. The very mild conditions required for the photodegradation and the high rate at which it occurs suggest applications for iron(III) cross-linked alginate hydrogels as light-controlled biocompatible scaffolds.  相似文献   

2.
New amphiphilic derivatives of sodium alginate were prepared by covalent attachment of dodecylamine onto the polysaccharide via amide linkages at different substitution ratios, using 2-chloro-1-methylpyridinium iodide (CMPI) as coupling reagent. The aim was to limit the progressive loss of associative behaviour which occurs in the case of previously described dodecyl ester alginate derivatives due to hydrolysis of ester bonds. A series of hydrogels was obtained which differed by the amount of attached dodecyl tails. The stability and viscoelastic properties were evaluated and compared to those of hydrogels obtained with alginate esters. The observed differences were discussed in relation to the synthesis procedures. The advantages of amide links are underlined, especially with regard to long-term stability of hydrogels.  相似文献   

3.
The mechanical rigidity and degradation rate of hydrogels utilized as cell transplantation vehicles have been regarded as critical factors in new tissue formation. However, conventional approaches to accelerate the degradation rate of gels deteriorate their function as a mechanical support in parallel. We hypothesized that adjusting the molecular weight distribution of polymers that are hydrolytically labile but capable of forming gels would allow one to alter the degradation rate of the gels over a broad range, while limiting the range of their elastic moduli (E). We investigated this hypothesis with binary alginate hydrogels formed from both ionically and covalently cross-linked partially oxidized (1% uronic acid residues), low [molecular weight (MW) approximately 60,000 g/mol] and high MW alginates (MW approximately 120,000 g/mol) in order to examine the utility of this approach with various cross-linking strategies. Increasing the fraction of low MW alginates to 0.50 maintained a value of E similar to that for the high MW alginate gels but led to faster degradation, irrespective of the cross-linking mode. This result was attributed to a faster separation between cross-linked domains upon chain breakages for the low MW alginates, coupled with their faster chain scission than the high MW alginates. The more rapidly degrading oxidized binary hydrogels facilitated the formation of new bone tissues from transplanted bone marrow stromal cells, as compared with the nonoxidized high MW hydrogels. The results of these studies will be useful for controlling the physical properties of a broad array of hydrogel-forming polymers.  相似文献   

4.
Alginate has been widely used in a variety of biomedical applications including drug delivery and cell transplantation. However, alginate itself has a very slow degradation rate, and its gels degrade in an uncontrollable manner, releasing high molecular weight strands that may have difficulty being cleared from the body. We hypothesized that the periodate oxidation of alginate, which cleaves the carbon-carbon bond of the cis-diol group in the uronate residue and alters the chain conformation, would result in promoting the hydrolysis of alginate in aqueous solutions. Alginate, oxidized to a low extent (approximately 5%), degraded with a rate depending on the pH and temperature of the solution. This polymer was still capable of being ionically cross-linked with calcium ions to form gels, which degraded within 9 days in PBS solution. Finally, the use of these degradable alginate-derived hydrogels greatly improved cartilage-like tissue formation in vivo, as compared to alginate hydrogels.  相似文献   

5.
The structure of calcium-saturated alginate hydrogels has been studied by combining rheological determinations and relaxometry measurements. The mechanical spectroscopy analyses performed on alginate gel cylinders at different polysaccharide concentration allowed estimating their main structural features such as the average mesh size. The calculation was based on the introduction of a front factor in the classical rubber elasticity approach which was correlated to the average length of the Guluronic acid blocks along the polysaccharide chain. Transverse relaxation time (T(2)) determinations performed on the cylinders revealed the presence of two relaxation rates of the water entrapped within the hydrogel network. The cross-correlation of the latter data with the rheological measurements allowed estimating the mesh size distribution of the hydrogel network. The results obtained for the hydrogel cylinders were found to be consistent with the relaxometric analysis performed on the alginate microbeads where, however, only one type of water bound into the network structure was detected. A good correlation was found in the average mesh size determined by means of relaxometric measurements on alginate microbeads and by a statistical analysis performed on TEM micrographs. Finally, the addition of a solution containing calcium ions allowed investigating further the different water relaxation modes within alginate hydrogels.  相似文献   

6.
Thermo-sensitive semi-IPN hydrogels were prepared via in situ copolymerization of N-isopropylacrylamide (NIPAAm) with poly(ethylene glycol)-co-poly(ε-caprolactone) (PEG-co-PCL) macromer in the presence of sodium alginate by UV irradiation technology. The effects of the sodium alginate content, temperature, and salt on the swelling behavior of the as-obtained hydrogels were studied. The results showed that the swelling ratio of the hydrogels increased with the increasing sodium alginate content at the same temperature, and decreased with the increase in temperature. The salt sensitivity of the semi-IPN hydrogels was dependent on the content of sodium alginate introduced in the hydrogels. The mechanical rheology of the hydrogels and in vitro release behavior of bovine serum albumin (BSA) in situ encapsulated within the hydrogels were also investigated. It was found that the introduction of sodium alginate with semi-IPN structure improved mechanical strength of the hydrogels and the cumulative release percentage of BSA from the hydrogels. Such double-sensitive semi-IPN hydrogel materials could be exploited as potential candidates for drug delivery carriers.  相似文献   

7.
Due to the relatively poor cell-material interaction of alginate hydrogel, alginate-gelatin crosslinked (ADA-GEL) hydrogel was synthesized through covalent crosslinking of alginate di-aldehyde (ADA) with gelatin that supported cell attachment, spreading and proliferation. This study highlights the evaluation of the physico-chemical properties of synthesized ADA-GEL hydrogels of different compositions compared to alginate in the form of films. Moreover, in vitro cell-material interaction on ADA-GEL hydrogels of different compositions compared to alginate was investigated by using normal human dermal fibroblasts. Viability, attachment, spreading and proliferation of fibroblasts were significantly increased on ADA-GEL hydrogels compared to alginate. Moreover, in vitro cytocompatibility of ADA-GEL hydrogels was found to be increased with increasing gelatin content. These findings indicate that ADA-GEL hydrogel is a promising material for the biomedical applications in tissue-engineering and regeneration.  相似文献   

8.
In this work, hydrogels based on semi-interpenetrating polymeric networks (semi-IPN) based on collagen-polyurethane-alginate were studied physicochemically and from different approaches for biomedical application. It was determined that the matrices in the hydrogel state are crosslinked by the formation of urea and amide bonds between the biopolymer chains and the polyurethane crosslinker. The increment in alginate content (0–40 wt%) significantly increases the swelling capacity, generating semi-crystalline granular structures with improved storage modulus and resistance to thermal, hydrolytic, and proteolytic degradation. The in vitro bioactivity results indicated that the composition of these novel hydrogels stimulates the metabolic activity of monocytes and fibroblasts, benefiting their proliferation; while in cancer cell lines, it was determined that the composition of these biomaterials decreases the metabolic activity of breast cancer cells after 48 h of stimulation, and for colon cancer cells their metabolic activity decreases after 72 h of contact for the hydrogel with 40 wt% alginate. The matrices show a behavior of multidose release of ketorolac, and a higher concentration of analgesic is released in the semi-IPN matrix. The inhibition capacity of Escherichia coli is higher if the polysaccharide concentration is low (10 wt%). The in vitro wound closure test (scratch test) results indicate that the hydrogel with 20 wt% alginate shows an improvement in wound closure at 15 days of contact. Finally, the bioactivity of mineralization was evaluated to demonstrate that these hydrogels can induce the formation of carbonated apatite on their surface. The engineered hydrogels show biomedical multifunctionality and they could be applied in soft and hard tissue healing strategies, anticancer therapies, and drug release devices.  相似文献   

9.
Hyaluronan (HA) based hydrogels have been synthesized combining chemical modification of the polysaccharide by partial oxidation, reductive amination and 'click chemistry'. HA was oxidized by 4-acetamido-TEMPO-mediated reaction, using sodium hypochlorite as primary oxidant and NaBr in buffered pH, so that the produced aldehyde moieties (hemiacetals) were trapped in situ by adding primary amines containing azide or alkyne-terminal groups. The structure of the reaction products, oxidized-HA and primary amines bonded to HA, was elucidated using 2D NMR spectroscopy. SEC-MALLS analysis of the modified substrates showed a negligible degradation of the polysaccharide using this procedure. Furthermore, azido- and alkynyl derivatives underwent cross-linking by click chemistry into hydrogels, which were characterized by NMR, FT-IR, swelling degree and mechanical properties. Possible application of the material as scaffold for tissue engineering was tested by seeding and proliferation of chondrocytes for up to 15 days.  相似文献   

10.
Degradable and electrically conductive polysaccharide hydrogels (DECPHs) have been synthesized by functionalizing polysaccharide with conductive aniline oligomers. DECPHs based on chitosan (CS), aniline tetramer (AT), and glutaraldehyde were obtained by a facile one-pot reaction by using the amine group of CS and AT under mild conditions, which avoids the multistep reactions and tedious purification involved in the synthesis of degradable conductive hydrogels in our previous work. Interestingly, these one-pot hydrogels possess good film-forming properties, electrical conductivity, and a pH-sensitive swelling behavior. The chemical structure and morphology before and after swelling of the hydrogels were verified by FT-IR, NMR, and SEM. The conductivity of the hydrogels was tuned by adjusting the content of AT. The swelling ratio of the hydrogels was altered by the content of tetraaniline and cross-linker. The hydrogels underwent slow degradation in a buffer solution. The hydrogels obtained by this facile approach provide new possibilities in biomedical applications, for example, biodegradable conductive hydrogels, films, and scaffolds for cardiovascular tissue engineering and controlled drug delivery.  相似文献   

11.
In this work, we investigated whether materials isolated from algae that threaten ecosystems can be used for human benefit. We converted acidic polysaccharides (ulvan) from the alga Ulva pertusa into soft hydrogel materials. In addition to ulvan, the hydrogels also contained alginate in a polyion complex with chitosan. Cross‐linking the hydrogel with glutaraldehyde reduced polysaccharide elution from the polyion complex gel. We also found that both ulvan? chitosan and alginate? chitosan gels were able to remove urea and heavy metals from aqueous solution. This is clinically significant, since during apheresis, toxic compounds such as urea have to be removed from the bloodstream of patients. Importantly, albumin was not removed by the hydrogels, implying that this vital protein can be returned to the bloodstream following dialysis.  相似文献   

12.
Biocompatible and biodegradable peptide hydrogels are drawing increasing attention as prospective materials for human soft tissue repair and replacement. To improve the rather unfavorable mechanical properties of our pure peptide hydrogels, in this work we examined the possibility of creating a double hydrogel network. This network was created by means of the coassembly of mutually attractive, but self-repulsive oligopeptides within an already-existing fibrous network formed by the charged, biocompatible polysaccharides chitosan, alginate, and chondroitin. Using dynamic oscillatory rheology experiments, it was found that the coassembly of the peptides within the existing polysaccharide network resulted in a less stiff material as compared to the pure peptide networks (the elastic modulus G' decreased from 90 to 10 kPa). However, these composite oligopeptide-polysaccharide hydrogels were characterized by a greater resistance to deformation (the yield strain γ grew from 4 to 100%). Small-angle neutron scattering (SANS) was used to study the 2D cross-sectional shapes of the fibers, their dimensional characteristics, and the mesh sizes of the fibrous networks. Differences in material structures found with SANS experiments confirmed rheology data, showing that incorporation of the peptides dramatically changed the morphology of the polysaccharide network. The resulting fibers were structurally very similar to those forming the pure peptide networks, but formed less stiff gels because of their markedly greater mesh sizes. Together, these findings suggest an approach for the development of highly deformation-resistant biomaterials.  相似文献   

13.
Hydrogels derived from synthetic polymers have been previously engineered to degrade under the activity of matrix metalloproteinases (MMPs). It is believed that these systems can act as extracellular-matrix (ECM) equivalents mimicking the degradation and remodeling of the ECM through the activity of cell-secreted enzymes. In this study, MMP-sensitive hydrogels derived from dextran were developed. In order to avoid the incorporation of hydrolyzable esters often introduced in dextran modification strategies, the polysaccharide was modified with p-maleimidophenyl isocyanate (PMPI) thereby introducing maleimide functionalities in the backbone and resulting in dextran derivatized with p-maleimidophenyl isocyanate (Dex-PMPI). This strategy was favored to separate out the effects of random hydrolysis and enzymatic digestion in the degradation of the dextran hydrogels. A peptide cross-linker, derived from collagen and susceptible to gelatinase A (MMP-2) digestion, was synthesized with bifunctional cysteine termini and used to cross-link the Dex-PMPI. These hydrogels were found to be hydrolytically stable for more than 200 days yet degraded either within 30 h when exposed to bacterial collagenase or within 16 days when exposed to human MMP-2, demonstrating enzymatic-mediated digestion of the peptide cross-links. Further modification of the cross-linked hydrogels with laminin-derived peptides enhanced cell adhesion and survival, demonstrating the potential of these materials for use in tissue engineering applications.  相似文献   

14.
The aim of this study was to formulate silica and alginate hydrogels for immobilization of β‐glucosidase. For this purpose, enzyme kinetics in hydrogels were determined, activity of immobilized enzymes was compared with that of free enzyme, and structures of silica and alginate hydrogels were characterized in terms of surface area and pore size. The addition of polyethylene oxide improved the mechanical strength of the silica gels and 68% of the initial activity of the enzyme was preserved after immobilizing into tetraethyl orthosilicate–polyethylene oxide matrix where the relative activity in alginate beads was 87%. The immobilized β‐glucosidase was loaded into glass–silicon–glass microreactors and catalysis of 4‐nitrophenyl β‐d ‐glucopyranoside was carried out at various retention times (5, 10, and 15 min) to compare the performance of silica and alginate hydrogels as immobilization matrices. The results indicated that alginate hydrogels exhibited slightly better properties than silica, which can be utilized for biocatalysis in microfluidic platforms.  相似文献   

15.
A photochemical reaction has been developed for the partial de-polymerization of sodium alginate, a polysaccharide utilized in medicine, pharmacy, basic sciences and foods. An aqueous solution of sodium alginate was photochemically depolymerized to ∼40% of its average molecular weight using ultraviolet light in the presence of titanium dioxide catalyst at pH 7 over a period of 3 h. The products were separated giving four fractions all having an average molecular weight that was smaller than that of the starting material. Characterization of the guluronate (G) and mannuronate (M) contents, and determination of the M/G ratio of photochemically depolymerized alginate, were accomplished using 1H NMR spectroscopy. The resulting M/G ratio was compared to that obtained for alginate fractions produced by acid hydrolysis. The M and G content, of each alginate fraction, was also assigned with regards to their occurrence in G-rich, M-rich or M/G heteropolymeric domains. This new depolymerization method might also be applicable in the preparation of alginate oligosaccharides for use in the food and pharmaceutical industries.  相似文献   

16.
Tannase was encapsulated in alginate, chitosan, carrageenan or pectin gel matrices, and in the case of alginate, coated with high or low molecular weight chitosan to reduce enzyme release. Cross-linking with glutaraldehyde also improved enzyme retention. Active enzyme preparations were obtained, although carrageenan gels were unstable in tea. Tannase activity was evaluated by reduction in centrifugable (flocculated) tea solids, and a reduction in tea cream measured turbidimetrically after removal of flocculated solids. Tannin interactions with the polysaccharide gels increased the level of centrifugable solids (flocculent) in the tea. An optimum bead formulation consisted of an alginate core, coated with chitosan and cross-linked with glutaraldehyde. Both core and coating materials contained active enzyme. Beads were prepared in a single step procedure involving extrusion of alginate/tannase solution into a hardening bath containing tannase-loaded, chitosan solution. Tannase retained hydrolytic activity through three successive batch cycles, for a total period of 39h processing, and tea cream was visibly removed by treatment with the immobilized tannase. Activity remained stable during 1-month bead storage under refrigeration.  相似文献   

17.
Ionic and acid gel formation of epimerised alginates; the effect of AlgE4   总被引:1,自引:0,他引:1  
AlgE4 is a mannuronan C5 epimerase converting homopolymeric sequences of mannuronate residues in alginates into mannuronate/guluronate alternating sequences. Treating alginates of different biological origin with AlgE4 resulted in different amounts of alternating sequences. Both ionically cross-linked alginate gels as well as alginic acid gels were prepared from the epimerised alginates. Gelling kinetics and gel equilibrium properties were recorded and compared to results obtained with the original non-epimerised alginates. An observed reduced elasticity of the alginic acid gels following epimerisation by AlgE4 seems to be explained by the generally increased acid solubility of the alternating sequences. Ionically (Ca(2+)) cross-linked gels made from epimerised alginates expressed a higher degree of syneresis compared to the native samples. An increase in the modulus of elasticity was observed in calcium saturated (diffusion set) gels whereas calcium limited, internally set alginate gels showed no change in elasticity. An increase in the sol-gel transitional rate of gels made from epimerised alginates was also observed. These results suggest an increased possibility of creating new junction zones in the epimerised alginate gel due to the increased mobility in the alginate chain segments caused by the less extended alternating sequences.  相似文献   

18.
A thermo-sensitive comb-like copolymer was synthesized by grafting PNIPAAm-COOH with a single carboxy end group onto aminated alginate (AAlg) through amide bond linkages. In the copolymer, alginate was the backbone and poly(N-isopropylacrylamide) (PNIPAAm) was the pendant group. The structures of AAlg and three AAlg-g-PNIPAAm copolymers with different PNIPAAm grafting ratios were determined by FTIR and 1H NMR. The rheological properties of AAlg-g-PNIPAAm copolymer hydrogels were measured by monitoring the viscosity, storage modulus and loss modulus as a function of temperature. The lower critical solution temperature of AAlg-g-PNIPAAm copolymers was measured as 35 °C through rheological analysis. An in vitro degradation study was carried out by monitoring weight loss. It was confirmed that degradation can be controlled by PNIPAAm modification. Encapsulation of human bone mesenchymal stem cells (hBMSCs) within hydrogels showed that the AAlg-g-PNIPAAm copolymer was not cytotoxic and preserved the viability of the entrapped cells well. The thermo-sensitive AAlg-g-PNIPAAm copolymer has attractive properties that make it suitable as cell or pharmaceutical delivery vehicles for a variety of tissue engineering applications.  相似文献   

19.
Methacrylamide groups were selectively coupled to cysteine residues in the presence of amines and alcohols by utilizing a disulfide exchange reaction in aqueous, acidic buffer. The tetrapeptide sequence, CYKC, was used as a cross-linker to create poly(acrylamide) hydrogels that dissolved when subjected to either a flowing or stationary solution of alpha-chymotrypsin. Control hydrogels that were cross-linked with the tetrapeptide, CSKC, were not affected by the same protease solution. In contrast, dissolution of both the CYKC and CSKC cross-linked hydrogel structures was accomplished by using the disulfide reducing agent tris(2-carboxyethyl) phosphine (TCEP). The chemoselective conjugation technique described could have utility for more advanced protease-responsive hydrogels as well as other hybrid materials composed of synthetic and biomacromolecules.  相似文献   

20.
Shih H  Lin CC 《Biomacromolecules》2012,13(7):2003-2012
Thiol-ene photoclick hydrogels have been used for a variety of tissue engineering and controlled release applications. In this step-growth photopolymerization scheme, four-arm poly(ethylene glycol) norbornene (PEG4NB) was cross-linked with dithiol containing cross-linkers to form chemically cross-linked hydrogels. While the mechanism of thiol-ene gelation was well described in the literature, its network ideality and degradation behaviors are not well-characterized. Here, we compared the network cross-linking of thiol-ene hydrogels to Michael-type addition hydrogels and found thiol-ene hydrogels formed with faster gel points and higher degree of cross-linking. However, thiol-ene hydrogels still contained significant network nonideality, demonstrated by a high dependency of hydrogel swelling on macromer contents. In addition, the presence of ester bonds within the PEG-norbornene macromer rendered thiol-ene hydrogels hydrolytically degradable. Through validating model predictions with experimental results, we found that the hydrolytic degradation of thiol-ene hydrogels was not only governed by ester bond hydrolysis, but also affected by the degree of network cross-linking. In an attempt to manipulate network cross-linking and degradation of thiol-ene hydrogels, we incorporated peptide cross-linkers with different sequences and characterized the hydrolytic degradation of these PEG-peptide hydrogels. In addition, we incorporated a chymotrypsin-sensitive peptide as part of the cross-linkers to tune the mode of gel degradation from bulk degradation to surface erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号