首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Microsomal fractions, glyoxysomes and mitochondria were isolated from homogenates of germinating castor-bean (Ricinus communis) endosperm by sucrose-density-gradient centrifugation. Washed membrane preparations from these cellular fractions were examined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. At corresponding developmental stages the endoplasmic-reticulum and glyoxysomal membranes were strikingly similar in polypeptide composition, at least 16 polypeptides being present in membranes isolated from 3-day-old tissue. Supplying [35S]methionine to intact endosperm tissue resulted in the labelling of all membrane polypeptides, the specific radioactivity in the endoplasmic reticulum being greater than for equivalent polypeptides of the glyoxysomal membrane. Washing these membranes with sodium deoxycholate solution extensively solubilized protein components, with the exception of a predominant polypeptide of mol.wt. 55000. Mitochondrial membrane preparations differed from those of the endoplasmic reticulum and glyoxysomes in polypeptide molecular-weight distribution and the [35S]methionine-labelling pattern. The similarity in polypeptide composition between endoplasmic-reticulum and glyoxysomal membranes is discussed in relation to glyoxysome biogenesis.  相似文献   

2.
Lord JM  Bowden L 《Plant physiology》1978,61(2):266-270
At the onset of castor bean (Ricinus communis) germination, 76% of the cellular malate synthase activity of the endosperm tissue was located in the microsomal fraction, with the remainder in the glyoxysomal fraction. During later developmental stages, when rapid malate synthase synthesis was occurring, an increasing proportion of the enzyme was recovered in glyoxysomes. The kinetics of [35S]methionine incorporation into microsomal and glyoxysomal malate synthase in 2-day-old endosperm tissue was followed by employing antiserum raised against glyoxysomal malate synthase to precipitate specifically the enzyme from KCl extracts of these organelle fractions. This experiment showed that microsomal malate synthase was labeled before the glyoxysomal enzyme. When such kinetic experiments were interrupted by the addition of an excess of unlabeled methionine, 35S-labeled malate synthase was rapidly lost from the microsomal fraction and was quantitatively recovered in the glyoxysomal fraction.

Free cytoplasmic ribosomes were separated from bound ribosomes (rough microsomes) using endosperm tissue labeled with [35S]methionine or 14C-amino-acids. Nascent polypeptide chains were released from polysome fractions using a puromycin-high salt treatment, and radioactive malate synthase was shown to be exclusively associated with bound polysomes.

Together these data establish that malate synthase is synthesized on bound ribosomes and vectorially discharged into the endoplasmic reticulum cisternae prior to its ultimate sequestration in glyoxysomes.

  相似文献   

3.
R. B. Mellor  J. M. Lord 《Planta》1978,141(3):329-332
Excised casto bean (Ricinus communis L.) endosperm tissue supplied with [14C]galactose incorporates radioactivity into particulate cell components. Fractionation of homogenates established that 14C-labeled trichloroacetic acid-insoluble material was located primarily in the microsomal and glyoxysomal fractions. The capacity of the tissue to incorporate [14C]galactose into organelle glycoprotein varied during seedling development, increasing during the first 3 days of germination and subsequently declining. The kinetics of incorporation into the major organelle fractions of 2-day old endosperm tissue showed that the endoplasmic reticulum was immediately labeled whereas a lag period preceded the labeling of glyoxysomes. Sub-fractionation of the isolated organelles established that the greatest proportion of the [14C]-galactose labeled glycoprotein was located in the membrane, although a significant incorporation into the matrix protein was also observed.The results indicate that the addition of the carbohydrate moiety to the polypeptide cores occurs in the endoplasmic reticulum during or immediately after their synthesis on membrane-bound ribosomes.Abbreviations ER endoplasmic reticulum - SDS sodium dodecyl sulphate - TCA trichloroacetic acid  相似文献   

4.
Excised castor bean endosperm halves incubated with CDP-[Me-14C]cholineactively incorporated this compound into membrane phosphatidylcholine.The capacity of the tissue to synthesize phosphatidyl-[14C]cholineincreased during the first 3 d of germination and subsequentlydeclined. At the onset of germination phosphatidyl-[l4C]cholinewas exclusively recovered in the ER membrane fraction. The rateof incorporation into the ER membranes increased strikinglyduring the first 24 h of germination while that into mitochondriaand glyoxysomes remained low. At later developmental stagesan increasing proportion of the newly synthesized phosphatidyl-[14C]cholinewas present in mitochondria and glyoxysomes; the rate of incorporationinto the membranes of these organelles increased while thatinto the ER membrane began to level off. The kinetics of CDP-[14C]cholineincorporation into membrane phosphatidylcholine of the majororganelle fractions of 3-d-old endosperm tissue showed thatthe ER was immediately labelled, whereas a lag period precededthe labelling of mitochondria and glyoxysomes. Assuming that the incorporation of CDP-[14C]choline into phosphatidylcholineserves as a reliable indicator of membrane synthesis, the resultsobtained suggest that a proliferation of ER membranes precedesthe formation of glyoxysomes and mitochondria in germinatingcastor bean endosperm. A comparison of developmental changesin (a) total ER and glyoxysomal phospholipid content and (b)ER and mitochondrial NADH cytochrome c reductase activity providedadditional evidence supporting this conclusion.  相似文献   

5.
Linda Bowden  J.M. Lord 《Planta》1977,134(3):267-272
Glyoxysomes isolated from the endosperm of castor bean (Ricinus communis L.) by sucrose density gradient centrifugation were fractionated into their matrix protein and membrane components. Antisera were raised in rabbits against both the matrix proteins and sodium dodecyl sulphate (SDS)-solubilized membrane proteins. SDS-polyacrylamide gel electrophoresis (PAGE) analysis established that such antisera precipitate all major polypeptide components present in their respective glyoxysomal mixedantigen preparations. Furthermore, when soluble constituents recovered from the microsomal vesicles or solubilized microsomal membranes were challenged with the appropriate glyoxysomal antiserum, serological determinants were again found to be present. Intact endosperm tissue was incubated with [35S]methionine and the kinetics of 35S-incorporation into protein recovered in immunoprecipitates when the glyoxysomal matrix fraction or the soluble fraction released from the microsomes were incubated with anti-glyoxysomal matrix serum were followed. [35S]antigens rapidly appeared in the microsomal fraction whereas a lag period preceded their appearance in glyoxysomes. Interupting such kinetic experiments by the addition of an excess of unlabelled methionine resulted in a rapid decrease in the microsomal content of [35S]antigens and a concomitant increase in glyoxysomal content.Abbreviations SDS sodium dodecyl sulphate - PAGE polyacrylamide gel electrophoresis - ER endoplasmic reticulum  相似文献   

6.
The origin and turnover of organelle membranes in castor bean endosperm   总被引:27,自引:17,他引:10       下载免费PDF全文
The origin and turnover of organelle membranes in castor bean (Ricinus communis L. var. Hale) endosperm was examined using choline-14C as a phospholipid precursor. On sucrose gradients three major particulate fractions were separated; a light membranous fraction (density 1.11-1.13 gram per cm3), the mitochondria (1.18 gram per cm3), and the glyoxysomes (1.24 gram per cm3). Choline-14C was readily incorporated into lecithin in all three particulate fractions, but the light membranous fraction became labeled first. Incorporation continued into all three fractions for 6 hours, at which time the available choline-14C had been completely used. Subsequently, 14C was lost from the three components at distinctly different rates. When an excess of unlabeled choline was added after 1 hour (pulse-chase experiment), incorporation of choline-14C into glyoxysomes and mitochondria continued for three hours, but at a diminishing rate. This was followed by a period in which the 14C content of the mitochondria declined at a rate expected, if the half life of lecithin in the membrane were about 50 hours and that of the glyoxysomes 10 hours. These values are close to those calculated from the experiments in which no chase was used. The labeling in the light membrane fraction behaved differently from that of the mitochondria and glyoxysomes following the chase of unlabeled choline. Incorporation continued for only 1 additional hour, and then the 14C content declined sharply in the subsequent 4 hours. The early kinetics and subsequent interrelationships are those expected if the lecithin in the membranes of mitochondria and glyoxysomes originates in components of the light membrane fraction.  相似文献   

7.
R. B. Mellor  J. M. Lord 《Planta》1979,147(1):89-96
A crude organelle preparation from germinating castor bean endosperm catalysed the incorporation of galactose from UDP[14C]galactose into chloroform/methanol (2:1)-soluble glactolipids. At least two galactolipids were formed. Most of the [14C]galactose was present in a galactolipid synthesized by the microsomal membranes, the remainder was present in a second galactolipid synthesized by other cellular membranes, possibly Golgi-derived. The addition of asialo-agalacto-fetuin reduced incorporation of [14C]galactose into the microsomal galactolipid with a concomitant increase in microsomal [14C]galactoprotein. Asialo-agalacto-fetuin did not affect galactolipid or galactoprotein synthesis by nonmicrosomal fractions. The results suggest that the endoplasmic reticulum is a major site of protein galactosylation in castor bean endosperm cells, and that galactose transfer from UDP-galactose to protein occurs via a lipid-linked intermediate.Abbreviations ER endoplasmic reticulum - ASGF asialoagalacto-fetuin - IDPase inosine diphosphatase - TCA trichloroacetic acid  相似文献   

8.
Homogenates of the endosperm of castor bean (Ricinus communis var. Hale) were prepared at intervals during germination and fractionated on sucrose gradients. Early in germination when glyoxysomes were being produced, a substantial proportion (50%) of the activities of malate synthetase and citrate synthetase was recovered in the membranes of the endoplasmic reticulum (mean density 1.12 grams per cubic centimeter). This proportion declined to less than 10% at 4 days when the glyoxysomes were fully developed.  相似文献   

9.
The hypothesis of a preferential biosynthesis of a major phenobarbital inducible form of hepatic cytochrome P-450 (P-450b) in mitochondria-associated rough endoplasmic reticulum (RERmito) was tested by measuring incorporation rates of [35S]methionine and delta-amino[3H]levulinate into the hemoprotein in adult rats. RERmito, rough microsomes (RM representing RER not associated with mitochondria) and smooth microsomes (SM) were quantitatively isolated from the same homogenate by rate zonal centrifugation and their content of P-450b determined by rocket immunoelectrophoresis. P-450b was isolated by immunoprecipitation from detergent-solubilized membrane fractions. The time course and rate of incorporation of [35S] methionine into immunoprecipitable P-450b of RERmito and of RM were similar at all time points studied (2-15 min) both under conditions of maximal induction (4 injections of phenobarbital in 4 days) and after a single injection of phenobarbital. The incorporation of [35S]methionine into P-450b of SM was slower at early time points (2-8 min) but similar to RERmito and RM after 15 min. In contrast, at short labeling periods (less than 8 min) more delta-amino[3H]levulinate was incorporated into P-450b of RERmito than into P-450b of RM and SM. No significant accumulation of free apocytochrome P-450b was found in either membrane fraction. These data indicate a close coordination of the biosynthesis and assembly of apocytochrome P-450b and its prosthetic heme but do not support the hypothesis of a major functional role of MITO X RER complexes in the synthesis of microsomal cytochrome P-450b.  相似文献   

10.
HeLa cell membranes were studied for the distribution and orientation of the Golgi marker enzyme uridine diphosphate-galactose:beta-D-N-acetylglucosamine beta, 1-4 transferase (GT). Short pulse labeling in the presence of [35S]methionine resulted in two precursor species (Mr = 44,000 and 47,000), present in a microsomal fraction with a density of 1.18 g/ml in sucrose, presumably derived from the rough endoplasmic reticulum. Processing of the N-linked oligosaccharide(s) occurred only after the precursor molecules migrated to lighter density fractions, presumably derived from the Golgi complex. The mature GT molecules (Mr = 54,000) contain O-linked oligosaccharides as shown by beta-elimination of metabolically incorporated [3H]galactose. The O-glycosylation occurred mainly in the light density fractions. The topology of GT was studied on membrane fractions after labeling with [35S]methionine as well as immunocytochemically on ultrathin cryosections at the electron microscope level. Our results indicate that both the antigenic determinants of GT as well as polypeptide chain are present intramembraneously and at the luminal side of the membranes of the Golgi complex and rough endoplasmic reticulum.  相似文献   

11.
R. B. Mellor  J. M. Lord 《Planta》1979,146(2):147-153
Differential and sucrose density gradient centrifugation have shown that the mannosyl transferase present in germinating castor bean endosperm cells which catalyses the synthesis of mannosyl-phosphoryl-polyisoprenol is exclusively located in the endoplasmic reticulum membrane. This intracellular location was confirmed using both ribosome-denuded microsomes isolated in the presence of EDTA and rough-surfaced microsomes isolated in the presence of excess Mg2+ added to maintain ribosome-membrane attachment. Separation of organelles following the incubation of crude particulate fractions with GDP[14C]mannose demonstrated that most of the mannolipid thus formed remained associated with the microsomal fraction. When organelles were isolated from intact tissue which had previously been incubated with GDP[14C]mannose, [14C]glycoprotein was found to be associated with other cellular fractions in addition to the microsomes, in particular the glyoxysomes. The kinetics of radioactive labelling of these organelles suggest that [14C]glycoprotein appears initially in the microsomal fraction and subsequently accumulates in the glyoxysomes. Subfractionation of isolated, [14C]glycoprotein-labelled glyoxysomes established that over 80% of the total radioactivity was present in the membrane, while sodium dodecyl sulphate-polyacrylamide gel electrophoresis of solubilized glyoxysomal membranes showed that the [14C]sugar moiety was associated with several, but not all, constituent polypeptides.Abbreviations ER endoplasmic reticulum - TCA trichloroacetic acid - SDS sodium dodecylsulphate - GDP guanosine diphosphate  相似文献   

12.
Golgi and endoplasmic-reticulum fractions were prepared from the lactating guinea-pig mammary gland. The endoplasmic-reticulum fraction was highly active in the processing and sequestration of milk-protein primary translation products. Explants from the lactating gland in organ culture were used to identify milk-protein intermediates present in the secretory pathway, and the timing of the events leading to their post-translational modification. With [35S]methionine, the milk proteins labelled after a short pulse (3 min) were represented by the partially processed (but not phosphorylated) caseins and alpha-lactalbumin sequestered within membrane-bound vesicles. After a 30 min labelling period, higher-Mr caseins with electrophoretic mobilities identical with those of the phosphorylated caseins isolated from milk were identified in the incubation medium, and sequestered within membrane-bound vesicles. Pulse-chase experiments established a precursor-product relationship between these forms. Secretion is apparent approx. 30 min after sequestration. Caseins are highly phosphorylated; removal of the phosphate residues with acid phosphatase results in proteins with increased electrophoretic mobility, similar to those of the partially processed early casein intermediates found sequestered in explants after a 3 min pulse with [35S]methionine, and those sequestered within microsomal membranes after mRNA-directed cell-free protein synthesis. A comparison of the proteins labelled during both short (5 min) and long (30 min) pulses with [35S]methionine and [32P]Pi shows that, in contrast with the 35S-labelled caseins, those labelled with [32P]Pi exhibit only electrophoretic mobilities identical with those of the mature caseins isolated from milk and those identified after long labelling periods with [35S]methionine. No phosphorylated early intermediate forms of caseins were identified. We conclude that the synthesis and post-translational modification of guinea-pig caseins occurs in two stages, (i) an early event involving synthesis and sequestration within the endoplasmic reticulum, an event that involves signal-peptide removal, followed (ii) 10-20 min later by phosphorylation at a different point in the secretory pathway, probably in the Golgi complex. Secretion of the phosphorylated caseins occurs 10-20 min later.  相似文献   

13.
The association of vesicular stomatitis virus proteins with intracellular and plasma membranes was examined by pulse and pulse-chase labeling of virus-infected HeLa cells with [35S]methionine and separation of cell homogenates into three major membrane fractions in discontinuous sucrose gradients. The glycoprotein G was primarily associated with rough endoplasmic reticulum-like membranes after short radioactive pulses (2 to 4 min) but accumulated in the plasma membrane-enriched fraction and the smooth internal membrane fraction with longer pulse or chase periods. The nucleocapsid protein N and the matrix protein M accumulated in the rough endoplasmic reticulum and plasma membrane-like fractions but not in the smooth internal membrane fraction. Only a fraction (35 to 40%) of the viral protein synthesized during a short pulse in the mid-cycle of infection was apparently utilized in released virus. The newly synthesized virus proteins first appeared in released virus in the order: M, N and L, and G.  相似文献   

14.
Redox activities, NADH:ferricyanide reductase, NAD(P)H:cytochrome reductases, and NADH:ascorbate free-radical reductase, are present in endoplasmic reticulum (ER) and glyoxysomal membranes from the endosperm of germinating castor bean (Ricinus comminus L. var Hale). The development of these functions was followed in glyoxysomes and ER isolated on sucrose gradients from castor bean endosperm daily from 0 through 6 days of germination. On a per seed basis, glyoxysomal and ER protein, glyoxysomal and ER membrane redox enzyme activities, and glyoxylate cycle activities peaked at day 4 as did the ER membrane content of cytochrome P-450. NADH:ferricyanide reductase was present in glyoxysomes and ER isolated from dry seed. This activity increased only about twofold in glyoxysomes and threefold in ER during germination relative to the amount of protein in the respective fractions. The other reductases, NADH:cytochrome reductase and NADH:ascorbate free-radical reductase, increased about 10-fold in the ER relative to protein up to 4 to 5 days, then declined. NADPH:cytochrome reductase reached maximum activity relative to protein at day 2 in both organelles. The increases in redox activities during germination indicate that the membranes of the ER and glyoxysome are being enriched with redox proteins during their development. The development of redox functions in glyoxysomes was found to be coordinated with development of the glyoxylate cycle.  相似文献   

15.
1. The regional and subcellular distribution of the incorporation of sn-[(14)C]glycerol 3-phosphate into rat brain lipids in vitro was investigated and compared with the relative specific activity of various chemical and enzyme markers. The similarity between the subcellular distribution of this incorporation and of NADPH-cytochrome c reductase activity indicated that the synthesis of phosphatidic acid via this route correlated with the presence of endoplasmic reticulum. 2. Experiments in which various amounts of the microsomal fraction were added to fixed amounts of nuclear, myelin, nerve-ending and mitochondrial preparations clearly demonstrated that the endoplasmic-reticulum contamination of these fractions was entirely responsible for the incorporation of sn-[(14)C]glycerol 3-phosphate. 3. The presence of CMP or CTP inhibited the incorporation of sn-[(14)C]glycerol 3-phosphate into the whole homogenate. Similar effects were observed with individual fractions, except for the mitochondria. With the mitochondrial fraction the effect of these cytidine nucleotides varied with the preparation, stimulating in some preparations and inhibiting with other preparations. The presence of CDP-choline stimulated the incorporation into the whole homogenate and to a lesser extent into the subcellular fractions. 4. These results indicate that the various organelles of the central nervous system are more dependent on endoplasmic reticulum for the production of glycerolipids de novo than has previously been appreciated.  相似文献   

16.
Membrane lipid metabolism in germinating castor bean endosperm   总被引:9,自引:7,他引:2       下载免费PDF全文
Castor bean (Ricinus communis L. var. Hale) endosperms, excised after 2 days germination at 30 C, were incubated 5 min to 8 hr with 14C-acetate and 3H-glycerol. Homogenates were fractionated by sucrose gradient centrifugation. Organelles found to be active in lipid synthesis were the lipid bodies and the endoplasmic reticulum. The products of incorporation in the lipid bodies were 3H-diglycerides containing 14C-fatty acids of more than 20 carbons. In contrast, the endoplasmic reticulum produced 3H-phospholipids as well as 3H-diglycerides rich in 14C-linoleate. The phospholipids synthesized and their acyl contents were of the types known to be the major components of organelle membranes in this tissue. Phospholipids and diglycerides containing 14C and 3H were found in the glyoxysomes and mitochondria subsequent to their appearance in the endoplasmic reticulum. The results show that germinating castor bean endosperm synthesizes membrane lipids de novo from acetate rather than reutilizing stored lipid components directly. It is also apparent that the endoplasmic reticulum is responsible for several steps in membrane lipid production.  相似文献   

17.
1. By rapid fractionation of blood platelet lysates on Percoll density gradients at alkaline pH (9.6), a very pure plasma-membrane fraction was obtained, as well as discrimination between endoplasmic reticulum and lysosomes. 2. Labelling of intact platelets with [32P]Pi followed by subcellular fractionation showed an exclusive localization of all inositol lipids in the plasma membrane. 3. Preincubation of whole platelets with myo-[3H]inositol in a buffer containing 1 mM-MnCl2 allowed incorporation of the label into PtdIns (phosphatidylinositol) of both plasma and endoplasmic-reticulum membrane, whereas [3H]PtdIns4P (phosphatidylinositol 4-phosphate) and [3H]PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) were exclusively found on the plasma membrane. 4. It is concluded that PtdIns4P and PtdIns(4,5)P2 are exclusively localized in the plasma membrane, whereas PtdIns is present in both plasma and endoplasmic-reticulum membranes. This could provide an explanation for previously reported data on hormone-sensitive and -insensitive inositol lipid pools.  相似文献   

18.
The presence of lipid- and protein-bound sugars in the major organelle fractions isolated from germinating castor bean (Ricinus communis L.) endosperm has been established. Microsomes, glyoxysomes and mitochondria were subfractionated into a membrane fraction and a fraction containing peripheral membrane and soluble matrix proteins. The membranes were further subfractionated into monosaccharide lipid, oligosaccharide lipid and lipid-free protein components. The constituent sugars present in the prepared fractions were released and identified by gas-liquid chromatography. While all derived protein fractions contained the N-acetylglucosamine and mannose typically found in the inner core region attached to asparagine residues in many glycoproteins, some differences were noted in the organellar distribution of peripheral sugars such as fucose, arabinose, and xylose.  相似文献   

19.
Summary Endoplasmic reticulum, mitochondria, and glyoxysomes were obtained from germinating castor bean endosperm,Ricinus communis, by sucrose gradient centrifugation. When each of the three organelle preparations was diluted in 150 mM KCl and centrifuged, all of the component membrane material, measured as phospholipid, was sedimented. Also, the respective membrane enzymes, phosphorylcholine-glyceride transferase, cytochrome c oxidase and alkaline lipase were recovered. The endoplasmic reticulum retained most (60%) of its protein. The mitochondria lost almost no protein while the glyoxysomes lost much of their soluble contents.The isolated endoplasmic reticulum was in the form of vesicles, 0.02 to 1 m, lacking bound ribosomes. The size, 0.5 to 0.8 m, and the structure of the mitochondria were unchanged by the purification procedure. The mitochondria were contracted, whereas the glyoxysomes were distended. The diameter of the glyoxysomes remained 0.4 to 1.5 m, but they lost much of their internal matrix. The small amount of matrix that survived was not especially associated with the membrane. The glyoxysome membrane was about the same thickness as that of the endoplasmic reticulum, 70 Å.  相似文献   

20.
Slices were prepared from rat forebrains and the incorporation of [3H]mannose and [35S]methionine into proteins and glycoproteins determined. The incorporation of methionine continued to increase for up to 8 hours whereas mannose incorporation was maximal between 2 and 4 hours and declined thereafter. Glycopeptides prepared by pronase digestion of [3H]mannose-labeled glycoproteins were digested with endoglucosaminidase H (endo H) and analysed by gel filtration. The major endo H-sensitive oligosaccharide eluted in a position similar to standard Man8GlcNAc. In the presence of castanospermine, which inhibits glucosidase I, the first enzymatic step in the processing of N-linked oligosaccharides, a new endo H-sensitive glycan similar in size to standard Glc3Man9GlcNAc2 accumulated. Synaptic membranes (SMs) were isolated from slices which had been incubated with either [3H]mannose or [35S]methionine in the presence and absence of castanospermine. In the presence of inhibitor the relative incorporation of [3H]mannose into high-mannose glycans of synaptic glycoproteins was increased. The incorporation of newly synthesized, [35S] methioninelabeled, Con A-binding glycoproteins into SMs was not affected by the addition of inhibitor. Many of the glycoproteins synthesized in the presence of castanospermine exhibited a decreased electrophoretic mobility indicative of the presence of altered oligosaccharide chains. The results indicate that changes in oligosaccharide composition produced by castanospermine had little effect on the subsequent transport and incorporation of glycoproteins into synaptic membranes.To whom to address reprint requests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号