首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viroids replicate via a rolling circle mechanism, and cleavage/ligation requires extensive rearrangement of the highly base-paired native structure. For Potato spindle tuber viroid (PSTVd), the switch from cleavage to ligation is driven by the change from a multibranched tetraloop structure to a loop E conformation. Here we present evidence that processing of Citrus viroid III (CVd-III), a member of a related group of viroids that also replicate in the nucleus, may proceed via a distinct pathway. Chemical probing of PSTVd and CVd-III miniRNAs with DMS and CMCT revealed that the loop E motifs of these two viroids have quite different tertiary structures. As shown by temperature gradient gel electrophoresis, the presence of two likely Watson-Crick GC pairs results in a significant overall stabilization of the CVd-III loop E-like motif. Unlike PSTVd, the upper strand of the CVd-III loop E-like motif cannot fold into a GNRA tetraloop, and comparison of suboptimal structures indicates that the initial cleavage event could occur on the 5' side of the only GU wobble pair in a helix involving a nearby pair of inverted repeats. According to our model, rearrangement of 3' sequences into a hairpin stem containing an identical arrangement of GC, GU, and CG base pairs and a second cleavage event is followed by formation of loop E, which serves to align the 5' and 3' termini of the CVd-III monomer prior to ligation. Because ligation would occur within loop E itself, stabilization of this motif may be needed to hold the 5' and 3' termini of CVd-III in position for the host ligase.  相似文献   

2.
3.
RNA tetraloops are common secondary structural motifs in many RNAs, especially ribosomal RNAs. There are few studies of small molecule recognition of RNA tetraloops although tetraloops are known to interact with RNA receptors and proteins, and to form nucleation sites for RNA folding. In this paper, we investigate the binding of neomycin, kanamycin, 2,4-diaminoquinazoline, quinacrine, and an aminoacridine derivative (AD1) to a GAAA tetraloop using fluorescence spectroscopy. We have found that AD1 and quinacrine bind to the GAAA tetraloop with the highest affinity of the molecules examined. The equilibrium dissociation constant of the AD1-GAAA tetraloop complex was determined to be 1.6 microM. RNase I and lead acetate footprinting experiments suggested that AD1 binds to the junction between the loop and stem of the GAAA tetraloop.  相似文献   

4.
5.
Solution structure of a GAAA tetraloop receptor RNA.   总被引:4,自引:0,他引:4       下载免费PDF全文
S E Butcher  T Dieckmann    J Feigon 《The EMBO journal》1997,16(24):7490-7499
The GAAA tetraloop receptor is an 11-nucleotide RNA sequence that participates in the tertiary folding of a variety of large catalytic RNAs by providing a specific binding site for GAAA tetraloops. Here we report the solution structure of the isolated tetraloop receptor as solved by multidimensional, heteronuclear magnetic resonance spectroscopy. The internal loop of the tetraloop receptor has three adenosines stacked in a cross-strand or zipper-like fashion. This arrangement produces a high degree of base stacking within the asymmetric internal loop without extrahelical bases or kinking the helix. Additional interactions within the internal loop include a U. U mismatch pair and a G.U wobble pair. A comparison with the crystal structure of the receptor RNA bound to its tetraloop shows that a conformational change has to occur upon tetraloop binding, which is in good agreement with previous biochemical data. A model for an alternative binding site within the receptor is proposed based on the NMR structure, phylogenetic data and previous crystallographic structures of tetraloop interactions.  相似文献   

6.
Du Z  Yu J  Andino R  James TL 《Biochemistry》2003,42(15):4373-4383
Stable RNA tetraloop motifs are found frequently in biologically active RNAs. These motifs carry out a wide variety of functions in RNA folding, in RNA-RNA and RNA-protein interactions. A great deal of knowledge about the structures and functions of tetraloop motifs has accumulated largely due to intensive theoretical, biochemical, and biophysical studies on three most frequently occurring families of tetraloop sequences, namely, the cUNCGg, the cGNRAg, and the gCUUGc sequences. Our knowledge surely is not exhaustive, and efforts are still being made to gain a better understanding. Here we report the NMR structure of a uCACGg tetraloop that occurs naturally within the cloverleaf RNA structure of the 5'-UTR of coxsackievirus B3. This tetraloop is the major determinant for interaction between the cloverleaf RNA and viral 3C protease, which is an essential part of a ribonucleoprotein complex that plays a critical role in the regulation of viral translation and replication. Our structure shows that the CACG tetraloop is closed by a wobble U.G base pair. The structure of the CACG tetraloop is stabilized by extensive base stacking and hydrogen bonding interactions strikingly similar to those previously reported for the cUUCGg tetraloop. Identification of these hallmark structural features strongly supports the existence of an extended YNCG tetraloop family. The U.G base pair closing the stem and the A residue in the loop introduce some small structural and themodynamic distinctions from the canonical cUUCGg tetraloop that may be important for recognition by the viral 3C protease.  相似文献   

7.
8.
Dimerization of retroviral genomic RNA is essential for efficient viral replication and is mediated by structural interactions between identical RNA motifs in the viral leader region. We have visualized, by electron microscopy, RNA dimers formed from the leader region of the prototype lentivirus, maedi visna virus. Characterization by in vitro assays of the domains responsible for this interaction has identified a 20 nucleotide sequence that functions as the core dimerization initiation site. This region is predicted to form a GACG tetraloop and therefore differs significantly from the kissing loop palindromes utilized to initiate dimerization in primate lentiviruses. The motif is strongly conserved across the ovine and caprine lentiviruses, implying a critical functional role. Furthermore, the proposed GACG tetraloop exhibits marked structural homology with similar structural motifs present in the leader regions of the alpha- and gamma-retroviruses, and the maedi visna virus dimer linkage region is capable of forming heterodimeric species with the Moloney murine leukemia virus Psi domain. This may be indicative of commonality of origin of the two viruses or convergent evolution.  相似文献   

9.
Cell-to-cell trafficking of RNA is an emerging biological principle that integrates systemic gene regulation, viral infection, antiviral response, and cell-to-cell communication. A key mechanistic question is how an RNA is specifically selected for trafficking from one type of cell into another type. Here, we report the identification of an RNA motif in Potato spindle tuber viroid (PSTVd) required for trafficking from palisade mesophyll to spongy mesophyll in Nicotiana benthamiana leaves. This motif, called loop 6, has the sequence 5'-CGA-3'...5'-GAC-3' flanked on both sides by cis Watson-Crick G/C and G/U wobble base pairs. We present a three-dimensional (3D) structural model of loop 6 that specifies all non-Watson-Crick base pair interactions, derived by isostericity-based sequence comparisons with 3D RNA motifs from the RNA x-ray crystal structure database. The model is supported by available chemical modification patterns, natural sequence conservation/variations in PSTVd isolates and related species, and functional characterization of all possible mutants for each of the loop 6 base pairs. Our findings and approaches have broad implications for studying the 3D RNA structural motifs mediating trafficking of diverse RNA species across specific cellular boundaries and for studying the structure-function relationships of RNA motifs in other biological processes.  相似文献   

10.
The sarcin–ricin loop (SRL) of 23S rRNA in the large ribosomal subunit is a factor-binding site that is essential for GTP-catalyzed steps in translation, but its precise functional role is thus far unknown. Here, we replaced the 15-nucleotide SRL with a GAAA tetraloop and affinity purified the mutant 50S subunits for functional and structural analysis in vitro. The SRL deletion caused defects in elongation-factor-dependent steps of translation and, unexpectedly, loss of EF-Tu-independent A-site tRNA binding. Detailed chemical probing analysis showed disruption of a network of rRNA tertiary interactions that hold together the 23S rRNA elements of the functional core of the 50S subunit, accompanied by loss of ribosomal protein L16. Our results reveal an influence of the SRL on the higher-order structure of the 50S subunit, with implications for its role in translation.  相似文献   

11.
Qin PZ  Butcher SE  Feigon J  Hubbell WL 《Biochemistry》2001,40(23):6929-6936
The GNRA (N: any nucleotide; R: purine) tetraloop/receptor interaction is believed to be one of the most frequently occurring tertiary interaction motifs in RNAs, but an isolated tetraloop/receptor complex has not been identified in solution. In the present work, site-directed spin labeling is applied to detect tetraloop/receptor complex formation and estimate the free energy of interaction. For this purpose, the GAAA tetraloop/receptor interaction was chosen as a model system. A method was developed to place nitroxide labels at specific backbone locations in an RNA hairpin containing the GAAA tetraloop. Formation of the tetraloop/receptor complex was monitored through changes in the rotational correlation time of the tetraloop and the attached nitroxide. Results show that a hairpin containing the GAAA tetraloop forms a complex with an RNA containing the 11-nucleotide GAAA tetraloop receptor motif with an apparent Kd that is strongly dependent on Mg2+. At 125 mM MgCl2, Kd = 0.40 +/- 0.05 mM. The corresponding standard free energy of complex formation is -4.6 kcal/mol, representing the energetics of the tetraloop/receptor interaction in the absence of other tertiary constraints. The experimental strategy presented here should have broad utility in quantifying weak interactions that would otherwise be undetectable, for both nucleic acids and nucleic acid-protein complexes.  相似文献   

12.
The contributions of various interactions in the GGCGCAAGCC hairpin containing a GCAA tetraloop were studied by computer simulations using the substitutions of functional groups. The guanosine (G) in the first tetraloop position or in the C-G closing base pair was replaced by 2-aminopurine (AP), and the individual tetraloop's adenosines (A) were replaced by purine (PUR). These substitutions eliminated particular hydrogen bonds thought to stabilize the GCAA tetraloop. For each substitution, molecular dynamics (MD) simulations were carried out in an aqueous solution with sodium counterions, using the CHARMM27 force field. The MD simulations showed that the substitutions in the first (G-->AP) and the third (A-->PUR) position of the GCAA tetraloop did not significantly influence the conformation of the hairpin. A long-lived bridging water molecule observed in the GCAA loop was present in both modified loops. The substitutions made in the last loop position (A-->PUR) or in the C-G base pair closing the tetraloop (G-->AP) to some extent influenced the loop structure and dynamics. These loops did not display the long-lived bridging water molecules. When the second A in the GCAA loop was replaced by PUR, the first A in the loop was observed in the anti or in the syn orientation about the glycosyl bond. The G to AP substitution in C-G base pair led to a change of their arrangement from the Watson-Crick to wobble. The MD simulations of the hairpin with C-AP wobble closing base pair showed increased conformational dynamics of the hairpin. The changes of hairpin formation free energy associated with the substitutions of individual bases were calculated by the free energy perturbation method. Our theoretical estimates suggest a larger destabilization for the G to AP substitutions in GCAA loop than for the substitutions of individual A's by PUR, which is in accordance with experimental tendency. The calculations predicted a similar free energy change for G to AP substitutions in the GCAA tetraloop and in the C-G closing base pair.  相似文献   

13.
Specific recognitions of GNRA tetraloops by small helical receptors are among the most widespread long-range packing interactions in large ribozymes. However, in contrast to GYRA and GAAA tetraloops, very few GNRA/receptor interactions have yet been identified to involve GGAA tetraloops in nature. A novel in vitro selection scheme based on a rigid self-assembling tectoRNA scaffold designed for isolation of intermolecular interactions with A-minor motifs has yielded new GGAA tetraloop-binding receptors with affinity in the nanomolar range. One of the selected receptors is a novel 12 nt RNA motif, (CCUGUG ... AUCUGG), that recognizes GGAA tetraloop hairpin with a remarkable specificity and affinity. Its physical and chemical characteristics are comparable to those of the well-studied '11nt' GAAA tetraloop receptor motif. A second less specific motif (CCCAGCCC ... GAUAGGG) binds GGRA tetraloops and appears to be related to group IC3 tetraloop receptors. Mutational, thermodynamic and comparative structural analysis suggests that natural and in vitro selected GNRA receptors can essentially be grouped in two major classes of GNRA binders. New insights about the evolution, recognition and structural modularity of GNRA and A-minor RNA-RNA interactions are proposed.  相似文献   

14.
Assembly of the human signal recognition particle (SRP) requires SRP19 protein to bind to helices 6 and 8 of SRP RNA. In the present study, structure of a 29-mer RNA composing the SRP19 binding site in helix 6 was determined by NMR spectroscopy. The two A:C mismatches were continuously stacked to each other and formed wobble type A:C base pairs. The GGAG tetraloop in helix 6 was found to adopt a similar conformation to that of GNRA tetraloop, suggesting that these tetraloops are included in an extensive new motif GNRR. Compared with the crystal structure of helix 6 in complex with SRP19 determined previously, the GGAG tetraloop in the complex was found to adopt a similar conformation to the free form, although the loop structure becomes more open upon SRP19 binding. Thus, SRP19 is thought to recognize the overall fold of the GGAG loop.  相似文献   

15.
Tetraloop-receptor interactions are prevalent structural units in RNAs, and include the GAAA/11-nt and GNRA-minor groove interactions. In this study, we have compiled a set of 78 nonredundant loop-helix interactions from X-ray crystal structures, and examined them for the extent of their sequence and structural variation. Of the 78 interactions in the set, only four were classical GAAA/11-nt motifs, while over half (48) were GNRA-minor groove interactions. The GNRA-minor groove interactions were not a homogeneous set, but were divided into five subclasses. The most predominant subclass is characterized by two triple base pair interactions in the minor groove, flanked by two ribose zipper contacts. This geometry may be considered the “standard” GNRA-minor groove interaction, while the other four subclasses are alternative ways to form interfaces between a minor groove and tetraloop. The remaining 26 structures in the set of 78 have loops interacting with mostly idiosyncratic receptors. Among the entire set, a number of sequence-structure correlations can be identified, which may be used as initial hypotheses in predicting three-dimensional structures from primary sequences. Conversely, other sequence patterns are not predictive; for example, GAAA loop sequences and GG/CC receptors bind to each other with three distinct geometries. Finally, we observe an example of structural evolution in group II introns, in which loop-receptor motifs are substituted for each other while maintaining the larger three-dimensional geometry. Overall, the study gives a more complete view of RNA loop-helix interactions that exist in nature.  相似文献   

16.
RNase III enzymes are a highly conserved family of proteins that specifically cleave double-stranded RNA (dsRNA). These proteins are involved in a variety of cellular functions, including the processing of many non-coding RNAs, mRNA decay, and RNA interference. In yeast Rnt1p, a dsRNA-binding domain (dsRBD) recognizes its substrate by interacting with stems capped with conserved AGNN tetraloops. The enzyme uses the tetraloop to cut 14nt to 16nt away into the stem in a ruler-like mechanism. The solution structure of Rnt1p dsRBD complexed to one of its small nucleolar (sno) RNA substrate revealed non-sequence-specific contacts with the sugar-phosphate backbone in the minor groove of the AGNN fold and the two non-conserved tetraloop nucleotides. Recently, a new form of Rnt1p substrates lacking the conserved AGNN sequence but instead harboring an AAGU tetraloop was found at the 5' end of snoRNA 48 precursor. Here, we report the solution structure of this hairpin capped with an AAGU tetraloop. Some of the stacking interactions and the position of the turn in the sugar-phosphate backbone are similar to the one observed in the AGNN loop structure; however, the AAGU sequence adopts a different conformation. The most striking difference was found at the 3' end of the loop where Rnt1p interacts with AGNN substrates. The last nucleotide is extruded from the AAGU tetraloop structure in contrast to the compact AGNN fold. The AAGU hairpin structure suggests that Rnt1p recognizes substrates with different tetraloop structures, indicating that the structural repertoire specifically recognized by Rnt1p is larger than previously anticipated.  相似文献   

17.
Chrysanthemum chlorotic mottle viroid (CChMVd) is a small RNA (398-401nt) with hammerhead ribozymes in both polarity strands that mediate self-cleavage of the oligomeric RNA intermediates generated in a rolling-circle mechanism of replication. Within the in vivo branched RNA conformation of CChMVd, a tetraloop has been identified as a major determinant of pathogenicity. Here we present a detailed study of this tetraloop by site-directed mutagenesis, bioassay of the CChMV-cDNA clones and analysis of the resulting progenies. None of the changes introduced in the tetraloop, including its substitution by a triloop or a pentaloop, abolished infectivity. In contrast to observations for other RNAs, the thermodynamically stable GAAA tetraloop characteristic of non-symptomatic CChMVd-NS strains was not functionally interchangeable for other stable tetraloops of the UNCG family, suggesting that the sequence, rather than the structure, is the major factor governing conservation of this motif. In most cases, the changes introduced initially led to symptomless infections, which eventually evolved to be symptomatic concurrently with the prevalence in the progeny of the UUUC tetraloop characteristic of symptomatic CChMVd-S strains. Only in one case did the GAAA tetraloop emerge and eventually dominate the progeny in infected plants that were non-symptomatic. These results revealed two major fitness peaks in the tetraloop (UUUC and GAAA), whose adjacent stem was also under strong selection pressure. Co-inoculations with CChMVd-S and -NS variants showed that only when the latter was in a 100- or 1000-fold excess did the infected plants remain symptomless, confirming the higher biological fitness of the S variant and explaining the lack of symptom expression previously observed in cross-protection experiments.  相似文献   

18.
Abstract

The contributions of various interactions in the GGCGCAAGCC hairpin containing a GCAA tetraloop were studied by computer simulations using the substitutions of functional groups. The guanosine (G) in the first tetraloop position or in the C-G closing base pair was replaced by 2-aminopurine (AP), and the individual tetraloop's adenosines (A) were replaced by purine (PUR). These substitutions eliminated particular hydrogen bonds thought to stabilize the GCAA tetraloop. For each substitution, molecular dynamics (MD) simulations were carried out in an aqueous solution with sodium counterions, using the CHARMM27 force field. The MD simulations showed that the substitutions in the first (G→AP) and the third (A→PUR) position of the GCAA tetraloop did not significantly influence the conformation of the hairpin. A long-lived bridging water molecule observed in the GCAA loop was present in both modified loops. The substitutions made in the last loop position (A→PUR) or in the C-G base pair closing the tetraloop (G→AP) to some extent influenced the loop structure and dynamics. These loops did not display the long- lived bridging water molecules. When the second A in the GCAA loop was replaced by PUR, the first A in the loop was observed in the anti or in the syn orientation about the gly- cosyl bond. The G to AP substitution in C-G base pair led to a change of their arrangement from the Watson-Crick to wobble. The MD simulations of the hairpin with C-AP wobble closing base pair showed increased conformational dynamics of the hairpin. The changes of hairpin formation free energy associated with the substitutions of individual bases were calculated by the free energy perturbation method. Our theoretical estimates suggest a larger destabilization for the G to AP substitutions in GCAA loop than for the substitutions of individual A's by PUR, which is in accordance with experimental tendency. The calculations predicted a similar free energy change for G to AP substitutions in the GCAA tetraloop and in the C-G closing base pair.  相似文献   

19.
To develop molecular tools for the detection and control of RNA molecules whose functions rely on their 3D structures, we have devised a selection system to isolate novel RNA motifs that interact with a target RNA structure within a given structural context. In this system, a GAAA tetraloop and its specific receptor motif (11-ntR) from an artificial RNA ligase ribozyme with modular architecture (the DSL ribozyme) were replaced with a target structure and random sequence, respectively. Motifs recognizing the target structure can be identified by in vitro selection based on ribozyme activity. A model selection targeting GAAA-loop successfully identified motifs previously known as GAAA-loop receptors. In addition, a new selection targeting a C-loop motif also generated novel motifs that interact with this structure. Biochemical analysis of one of the C-loop receptor motifs revealed that it could also function as an independent structural unit.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号