首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Inner nuclear membrane Sad1/UNC-84 (SUN) proteins interact with outer nuclear membrane (ONM) Klarsicht/ANC-1/Syne homology (KASH) proteins, forming linkers of nucleoskeleton to cytoskeleton conserved from yeast to human and involved in positioning of nuclei and chromosomes. Defects in SUN-KASH bridges are linked to muscular dystrophy, progeria, and cancer. SUN proteins were recently identified in plants, but their ONM KASH partners are unknown. Arabidopsis WPP domain-interacting proteins (AtWIPs) are plant-specific ONM proteins that redundantly anchor Arabidopsis RanGTPase-activating protein 1 (AtRanGAP1) to the nuclear envelope (NE). In this paper, we report that AtWIPs are plant-specific KASH proteins interacting with Arabidopsis SUN proteins (AtSUNs). The interaction is required for both AtWIP1 and AtRanGAP1 NE localization. AtWIPs and AtSUNs are necessary for maintaining the elongated nuclear shape of Arabidopsis epidermal cells. Together, our data identify the first KASH members in the plant kingdom and provide a novel function of SUN-KASH complexes, suggesting that a functionally diverged SUN-KASH bridge is conserved beyond the opisthokonts.  相似文献   

2.
Sun2 is a novel mammalian inner nuclear membrane protein   总被引:1,自引:0,他引:1  
Sun protein (Sun1 and Sun2) cDNAs were previously cloned based on the homology of their C-terminal regions (SUN (Sad1 and UNC) domain) with the Caenorhabditis elegans protein UNC-84 whose mutation disrupts nuclear migration/positioning. In this study, we raised an anti-Sun2 serum and identified Sun2 in mammalian cells. In HeLa cells, Sun2 displays a nuclear rim-like pattern typical for a nuclear envelope protein. The Sun2 antibody signal co-localizes with nuclear pore and INM markers signals. The rim-like pattern was also observed with the recombinant full-length Sun2 protein fused to either EGFP or V5 epitopes. In addition, we found that a recombinant truncated form of Sun2, extending from amino acids 26 to 339, is sufficient to specify the nuclear envelope localization. Biochemical analyses show that Sun2 is an 85-kDa protein that is partially insoluble in detergent with high salt concentration and in chaotropic agents. Furthermore, Sun2 is enriched in purified HeLa cell nuclei. Electron microscopy analysis shows that Sun2 localizes in the nuclear envelope with a sub-population present in small clusters. Additionally, we show that the SUN domain of Sun2 is localized to the periplasmic space between the inner and the outer nuclear membranes. From our data, we conclude that Sun2 is a new mammalian inner nuclear membrane protein. Because the SUN domain is conserved from fission yeast to mammals, we suggest that Sun2 belongs to a new class of nuclear envelope proteins with potential relevance to nuclear membrane function in the context of the involvement of its components in an increasing spectrum of human diseases.  相似文献   

3.
Nuclear migration and positioning within cells are critical for many developmental processes and are governed by the cytoskeletal network. Although mechanisms of nuclear-cytoskeletal attachment are unclear, growing evidence links a novel family of nuclear envelope (NE) proteins that share a conserved C-terminal SUN (Sad1/UNC-84 homology) domain. Analysis of Caenorhabditis elegans mutants has implicated UNC-84 in actin-mediated nuclear positioning by regulating NE anchoring of a giant actin-binding protein, ANC-1. Here, we report the identification of SUN1 as a lamin A-binding protein in a yeast two-hybrid screen. We demonstrate that SUN1 is an integral membrane protein located at the inner nuclear membrane. While the N-terminal domain of SUN1 is responsible for detergent-resistant association with the nuclear lamina and lamin A binding, lamin A/C expression is not required for SUN1 NE localization. Furthermore, SUN1 does not interact with type B lamins, suggesting that NE localization is ensured by binding to an additional nuclear component(s), most likely chromatin. Importantly, we find that the luminal C-terminal domain of SUN1 interacts with the mammalian ANC-1 homologs nesprins 1 and 2 via their conserved KASH domain. Our data provide evidence of a physical nuclear-cytoskeletal connection that is likely to be a key mechanism in nuclear-cytoplasmic communication and regulation of nuclear position.  相似文献   

4.
The SUN proteins are a conserved family of proteins in eukaryotes. Human UNC84A (Sun1) is a homolog of Caenorhabditis elegans UNC-84, a protein involved in nuclear anchorage and migration. We have analyzed targeting of UNC84A to the nuclear envelope (NE) and show that the N-terminal 300 amino acids are crucial for efficient NE localization of UNC84A whereas the conserved C-terminal SUN domain is not required. Furthermore, we demonstrate by combining RNA interference with immunofluorescence and fluorescence recovery after photobleaching analysis that localization and anchoring of UNC84A is not dependent on the lamin proteins, in contrast to what had been observed for C. elegans UNC-84.  相似文献   

5.
Lamin A is a nuclear envelope constituent involved in a group of human disorders, collectively referred to as laminopathies, which include Emery-Dreifuss muscular dystrophy. Because increasing evidence suggests a role of lamin A precursor in nuclear functions, we investigated the processing of prelamin A along muscle differentiation. Both protein levels and cellular localization of prelamin A appears to be modulated during C2C12 mouse myoblasts activation. Similar changes also occur in the expression of two lamin A-binding proteins: emerin and LAP2α. Furthermore prelamin A forms a complex with LAP2α in differentiating myoblasts. Prelamin A accumulation in cycling myoblasts by expressing unprocessable mutants affects LAP2α and PCNA amount and increases caveolin 3 mRNA and protein levels, whilst accumulation of prelamin A in differentiated muscle cells following treatment with a farnesyl transferase inhibitor inhibits caveolin 3 expression. These data provide evidence for a critical role of lamin A precursor in the early steps of muscle cell differentiation. In fact the post-translational processing of prelamin A affects caveolin 3 expression and influences the myoblast differentiation process. Thus, altered lamin A processing could affect myoblast differentiation and/or muscle regeneration and might contribute to the myopathic phenotype.  相似文献   

6.
Lamin A is a nuclear lamina constituent implicated in a number of human disorders including Emery-Dreifuss muscular dystrophy. Since increasing evidence suggests a role of the lamin A precursor in nuclear functions, we investigated the processing of prelamin A during differentiation of C2C12 mouse myoblasts. We show that both protein levels and cellular localization of prelamin A are modulated during myoblast activation. Similar changes of lamin A-binding proteins emerin and LAP2α were observed. Furthermore, prelamin A was found in a complex with LAP2α in differentiating myoblasts. Prelamin A accumulation in cycling myoblasts by expressing unprocessable mutants affected LAP2α and PCNA amount and increased caveolin 3 mRNA and protein levels, while accumulation of prelamin A in differentiated muscle cells following treatment with a farnesyl transferase inhibitor appeared to inhibit caveolin 3 expression. Our data provide evidence for a critical role of the lamin A precursor in the early steps of muscle cell differentiation.  相似文献   

7.
We have recently reported the identification and characterization of Sad1/UNC84 (SUN) domain proteins in various plant species. In animals and yeasts, SUN domain proteins are localized at the inner nuclear membrane and form a bridge across the nuclear envelope (NE) by interacting with outer nuclear membrane-localized Klarsicht/Anc-1/Syne-1 homology (KASH) domain proteins. This bridge physically connects cytoskeletal elements with chromatin and nucleoskeletal components. These multiprotein complexes are essential for various cellular and nuclear processes. The identification of SUN domain proteins provides the first evidence of putative NE bridging complexes in plants. Here we speculate on the composition and functions of these in regards to our current understanding of plant SUN domain proteins.Key words: SUN domain protein, LINC complex, plant nuclear envelope, cytoskeleton, KASH domain proteins, Arabidopsis  相似文献   

8.
Lamin A, a protein component of the nuclear lamina, is synthesized as a precursor named prelamin A, whose multi-step maturation process involves different protein intermediates. As demonstrated in laminopathies such as familial partial lipodystrophy, mandibuloacral dysplasia, Werner syndrome, Hutchinson-Gilford progeria syndrome and restrictive dermopathy, failure of prelamin A processing results in the accumulation of lamin A protein precursors inside the nucleus which dominantly produces aberrant chromatin structure. To understand if nuclear lamina components may be involved in prelamin A chromatin remodeling effects, we investigated barrier-to-autointegration factor (BAF) localization and expression in prelamin A accumulating cells. BAF is a DNA-binding protein that interacts directly with histones, lamins and LEM-domain proteins and has roles in chromatin structure, mitosis and gene regulation.In this study, we show that the BAF heterogeneous localization between nucleus and cytoplasm observed in HEK293 cycling cells changes in response to prelamin A accumulation. In particular, we observed that the accumulation of lamin A, non-farnesylated prelamin A and farnesylated carboxymethylated lamin A precursors induce BAF nuclear translocation. Moreover, we show that the treatment of human fibroblasts with prelamin A interfering drugs results in similar changes. Finally, we report that the accumulation of progerin, a truncated form of farnesylated and carboxymethylated prelamin A identified in Hutchinson-Gilford progeria syndrome cells, induces BAF recruitment in the nucleus. These findings are supported by coimmunoprecipitation of prelamin A or progerin with BAF in vivo and suggest that BAF could mediate prelamin A-induced chromatin effects.  相似文献   

9.
The SUN (Sad1-UNC-84 homology) domain is conserved in a number of nuclear envelope proteins involved in nuclear migration, meiotic telomere tethering, and antiviral responses. The LINC (linker of nucleoskeleton and cytoskeleton) complex, formed by the SUN and the nesprin proteins at the nuclear envelope, serves as a mechanical linkage across the nuclear envelope. Here we report the crystal structure of the SUN2 protein SUN domain, which reveals a homotrimer. The SUN domain is sufficient to mediate binding to the KASH (Klarsicht, ANC-1, and Syne homology) domain of nesprin 2, and the regions involved in the interaction have been identified. Binding of the SUN domain to the KASH domain is abolished by deletion of a region important for trimerization or by point mutations associated with nuclear migration failure. We propose a model of the LINC complex, where the SUN and the KASH domains form a higher ordered oligomeric network in the nuclear envelope. These findings provide the structural basis for understanding the function and the regulation of the LINC complex.  相似文献   

10.
Mandibuloacral dysplasia type A (MADA) is a rare laminopathy characterized by growth retardation, craniofacial anomalies, bone resorption at specific sites including clavicles, phalanges and mandibula, mottled cutaneous pigmentation, skin rigidity, partial lipodystrophy, and insulin resistance. The disorder is caused by recessive mutations of the LMNA gene encoding for A-type lamins. The molecular feature of MADA consists in the accumulation of the unprocessed lamin A precursor, which is detected at the nuclear rim and in intranuclear aggregates. Here, we report the characterization of prelamin A post-translational modifications in MADA cells that induce alterations in the chromatin arrangement and dislocation of nuclear envelope-associated proteins involved in correct nucleo-cytoskeleton relationships. We show that protein post-translational modifications change depending on the passage number, suggesting the onset of a feedback mechanism. Moreover, we show that treatment of MADA cells with the farnesyltransferase inhibitors is effective in the recovery of the chromatin phenotype, altered in MADA, provided that the cells are at low passage number, while at high passage number, the treatment results ineffective. Moreover, the distribution of the lamin A interaction partner SUN2, a constituent of the nuclear envelope, is altered by MADA mutations, as argued by the formation of a highly disorganized lattice. Treatment with statins partially rescues proper SUN2 organization, indicating that its alteration is caused by farnesylated prelamin A accumulation. Given the major role of SUN1 and SUN2 in the nucleo-cytoskeleton interactions and in regulation of nuclear positioning in differentiating cells, we hypothesise that mechanisms regulating nuclear membrane-centrosome interplay and nuclear movement may be affected in MADA fibroblasts.  相似文献   

11.
Behaviour of the NE (nuclear envelope) during open mitosis has been explored extensively in metazoans, but lack of native markers has limited similar investigations in plants. In the present study, carried out using living synchronized tobacco BY-2 suspension cultures, the non-functional NE marker LBR (lamin B receptor)-GFP (green fluorescent protein) and two native, functional NE proteins, AtSUN1 [Arapidopsis thaliana SUN (Sad1/UNC84) 1] and AtSUN2, we provide evidence that the ER (endoplasmic reticulum)-retention theory for NE membranes is applicable in plants. We also observe two apparently unique plant features: location of the NE-membrane components in close proximity to chromatin throughout division, and spatially distinct reformation of the NE commencing at the chromatin surface facing the spindle poles and concluding at the surface facing the cell plate. Mobility of the proteins was investigated in the interphase NE, during NE breakdown and reformation, in the spindle membranes and the cell plate. A role for AtSUN2 in nuclear envelope breakdown is suggested.  相似文献   

12.
Prelamin A is farnesylated and methylated on the cysteine residue of a carboxyl-terminal CaaX motif. In the nucleus, prelamin A is processed to lamin A by endoproteolytic removal of the final 18 amino acids, including the farnesylated cysteine residue. Using the yeast two-hybrid assay, we isolated a novel human protein, Narf, that binds the carboxyl-terminal tail of prelamin A. Narf has limited homology to iron-only bacterial hydrogenases and eukaryotic proteins of unknown function. Narf is encoded by a 2-kilobase mRNA expressed in all human cell lines and tissues examined. The protein is detected in the nuclear fraction of HeLa cell lysates on Western blots and can be extracted from nuclear envelopes with 0.5 M NaCl. When a FLAG epitope-tagged Narf is expressed in HeLa cells, it is exclusively nuclear and partially co-localizes with the nuclear lamina. The farnesylation status of prelamin A determines its ability to bind to Narf. Inhibition of farnesyltransferase and mutation or deletion of the CaaX motif from the prelamin A tail domain inhibits Narf binding in yeast two-hybrid and in vitro binding assays. The prenyl-dependent binding of Narf to prelamin A is an important first step in understanding the functional significance of the lamin A precursor.  相似文献   

13.
Lamin A contributes to the structure of nuclei in all mammalian cells and plays an important role in cell division and migration. Mature lamin A is derived from a farnesylated precursor protein, known as prelamin A, which undergoes post-translational cleavage catalyzed by the zinc metalloprotease STE24 (ZPMSTE24). Accumulation of farnesylated prelamin A in the nuclear envelope compromises cell division, impairs mitosis and induces an increased expression of inflammatory gene products. ZMPSTE24 has been proposed as a potential therapeutic target in oncology. A library of peptidomimetic compounds were synthesized and screened for their ability to induce accumulation of prelamin A in cancer cells and block cell migration in pancreatic ductal adenocarcinoma cells. The results of this study suggest that inhibitors of lamin A maturation may interfere with cell migration, the biological process required for cancer metastasis.  相似文献   

14.
Liang Y  Chiu PH  Yip KY  Chan SY 《PloS one》2011,6(5):e20507
SUN2 is an inner nuclear membrane protein with a conserved Sad1/UNC-84 homology SUN-domain at the C-terminus. Intriguingly, SUN2 has also been reported to interact with Rab5, which localizes in early endosomes. To clarify the dual subcellular localization of SUN2, we investigated its localization in lamin A/C deficient cells rescued with lamin A or lamin C isoform, and in HeLa cells transfected with Rab5 or its mutants. We found that expression of lamin A but not lamin C partly restored the nuclear envelope localization of SUN2. SUN2 was redistributed to endosomes upon overexpression of Rab5, but remained on the nuclear envelope when the SUN domain was deleted. To explore the physiological function of SUN2 in vesicle trafficking and endocytosis, we demonstrated the colocalization of endogenous SUN2 and Rab5. Moreover, overexpression of SUN2 stimulated the uptake of transferrin while suppression of SUN2 expression attenuated the process. These findings support a role of SUN2 in endocytosis.  相似文献   

15.
Although a plethora of nuclear envelope (NE) transmembrane proteins (NETs) have been identified in opisthokonts, plant NETs are largely unknown. The only known NET homologues in plants are Sad1/UNC-84 (SUN) proteins, which bind Klarsicht/ANC-1/Syne-1 homology (KASH) proteins. Therefore, de novo identification of plant NETs is necessary. Based on similarities between opisthokont KASH proteins and the only known plant KASH proteins, WPP domain–interacting proteins, we used a computational method to identify the KASH subset of plant NETs. Ten potential plant KASH protein families were identified, and five candidates from four of these families were verified for their NE localization, depending on SUN domain interaction. Of those, Arabidopsis thaliana SINE1 is involved in actin-dependent nuclear positioning in guard cells, whereas its paralogue SINE2 contributes to innate immunity against an oomycete pathogen. This study dramatically expands our knowledge of plant KASH proteins and suggests that plants and opisthokonts have recruited different KASH proteins to perform NE regulatory functions.  相似文献   

16.
The movement of chromosomes during meiosis involves location of their telomeres at the inner surface of the nuclear envelope. Sad1/UNC‐84 (SUN) domain proteins are inner nuclear envelope proteins that are part of complexes linking cytoskeletal elements with the nucleoskeleton, connecting telomeres to the force‐generating mechanism in the cytoplasm. These proteins play a conserved role in chromosome dynamics in eukaryotes. Homologues of SUN domain proteins have been identified in several plant species. In Arabidopsis thaliana, two proteins that interact with each other, named AtSUN1 and AtSUN2, have been identified. Immunolocalization using antibodies against AtSUN1 and AtSUN2 proteins revealed that they were associated with the nuclear envelope during meiotic prophase I. Analysis of the double mutant Atsun11 Atsun22 has revealed severe meiotic defects, namely a delay in the progression of meiosis, absence of full synapsis, the presence of unresolved interlock‐like structures, and a reduction in the mean cell chiasma frequency. We propose that in Arabidopsis thaliana, overlapping functions of SUN1 and SUN2 ensure normal meiotic recombination and synapsis.  相似文献   

17.
Proteins of the nuclear envelope (NE) are associated with a range of inherited disorders, most commonly involving muscular dystrophy and cardiomyopathy, as exemplified by Emery-Dreifuss muscular dystrophy (EDMD). EDMD is both genetically and phenotypically variable, and some evidence of modifier genes has been reported. Six genes have so far been linked to EDMD, four encoding proteins associated with the LINC complex that connects the nucleus to the cytoskeleton. However, 50% of patients have no identifiable mutations in these genes. Using a candidate approach, we have identified putative disease-causing variants in the SUN1 and SUN2 genes, also encoding LINC complex components, in patients with EDMD and related myopathies. Our data also suggest that SUN1 and SUN2 can act as disease modifier genes in individuals with co-segregating mutations in other EDMD genes. Five SUN1/SUN2 variants examined impaired rearward nuclear repositioning in fibroblasts, confirming defective LINC complex function in nuclear-cytoskeletal coupling. Furthermore, myotubes from a patient carrying compound heterozygous SUN1 mutations displayed gross defects in myonuclear organization. This was accompanied by loss of recruitment of centrosomal marker, pericentrin, to the NE and impaired microtubule nucleation at the NE, events that are required for correct myonuclear arrangement. These defects were recapitulated in C2C12 myotubes expressing exogenous SUN1 variants, demonstrating a direct link between SUN1 mutation and impairment of nuclear-microtubule coupling and myonuclear positioning. Our findings strongly support an important role for SUN1 and SUN2 in muscle disease pathogenesis and support the hypothesis that defects in the LINC complex contribute to disease pathology through disruption of nuclear-microtubule association, resulting in defective myonuclear positioning.  相似文献   

18.
19.
The nuclear envelope (NE) LINC complex, in mammals comprised of SUN domain and nesprin proteins, provides a direct connection between the nuclear lamina and the cytoskeleton, which contributes to nuclear positioning and cellular rigidity. SUN1 and SUN2 interact with lamin A, but lamin A is only required for NE localization of SUN2, and it remains unclear how SUN1 is anchored. Here, we identify emerin and short nesprin-2 isoforms as novel nucleoplasmic binding partners of SUN1/2. These have overlapping binding sites distinct from the lamin A binding site. However, we demonstrate that tight association of SUN1 with the nuclear lamina depends upon a short motif within residues 209–228, a region that does not interact significantly with known SUN1 binding partners. Moreover, SUN1 localizes correctly in cells lacking emerin. Importantly then, the major determinant of SUN1 NE localization has yet to be identified. We further find that a subset of lamin A mutations, associated with laminopathies Emery-Dreifuss muscular dystrophy (EDMD) and Hutchinson-Gilford progeria syndrome (HGPS), disrupt lamin A interaction with SUN1 and SUN2. Despite this, NE localization of SUN1 and SUN2 is not impaired in cell lines from either class of patients. Intriguingly, SUN1 expression at the NE is instead enhanced in a significant proportion of HGPS but not EDMD cells and strongly correlates with pre-lamin A accumulation due to preferential interaction of SUN1 with pre-lamin A. We propose that these different perturbations in lamin A-SUN protein interactions may underlie the opposing effects of EDMD and HGPS mutations on nuclear and cellular mechanics.  相似文献   

20.
Myotonic dystrophy 1 (DM1) is a multisystemic disease caused by a triplet nucleotide repeat expansion in the 3' untranslated region of the gene coding for myotonic dystrophy protein kinase (DMPK). DMPK is a nuclear envelope (NE) protein that promotes myogenic gene expression in skeletal myoblasts. Muscular dystrophy research has revealed the NE to be a key determinant of nuclear structure, gene regulation, and muscle function. To investigate the role of DMPK in NE stability, we analyzed DMPK expression in epithelial and myoblast cells. We found that DMPK localizes to the NE and coimmunoprecipitates with Lamin-A/C. Overexpression of DMPK in HeLa cells or C2C12 myoblasts disrupts Lamin-A/C and Lamin-B1 localization and causes nuclear fragmentation. Depletion of DMPK also disrupts NE lamina, showing that DMPK is required for NE stability. Our data demonstrate for the first time that DMPK is a critical component of the NE. These novel findings suggest that reduced DMPK may contribute to NE instability, a common mechanism of skeletal muscle wasting in muscular dystrophies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号