首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhalation of the crystalline form of silica is associated with a variety of pathologies, from acute lung inflammation to silicosis, in addition to autoimmune disorders and cancer. Basic science investigators looking at the mechanisms involved with the earliest initiators of disease are focused on how the alveolar macrophage interacts with the inhaled silica particle and the consequences of silica-induced toxicity on the cellular level. Based on experimental results, several rationales have been developed for exactly how crystalline silica particles are toxic to the macrophage cell that is functionally responsible for clearance of the foreign particle. For example, silica is capable of producing reactive oxygen species (ROS) either directly (on the particle surface) or indirectly (produced by the cell as a response to silica), triggering cell-signaling pathways initiating cytokine release and apoptosis. With murine macrophages, reactive nitrogen species are produced in the initial respiratory burst in addition to ROS. An alternative explanation for silica toxicity includes lysosomal permeability, by which silica disrupts the normal internalization process leading to cytokine release and cell death. Still other research has focused on the cell surface receptors (collectively known as scavenger receptors) involved in silica binding and internalization. The silica-induced cytokine release and apoptosis are described as the function of receptor-mediated signaling rather than free radical damage. Current research ideas on silica toxicity and binding in the alveolar macrophage are reviewed and discussed.  相似文献   

2.

Background

Antibodies are often involved in enhancing particle clearance by macrophages. Although the mechanisms of antibody-dependent phagocytosis have been studied for IgG in greater detail, very little is known about IgM-mediated clearance. It has been generally considered that IgM does not support phagocytosis. Recent studies indicate that natural IgM is important to clear microbes and other bioparticles, and that shape is critical to particle uptake by macrophages; however, the relevance of IgM and particle size in their clearance remains unclear. Here we show that IgM has a size-dependent effect on clearance.

Methodology/Principal Findings

We used antibody-opsonized sheep red blood cells, different size beads and apoptotic cells to determine the effect of human and mouse IgM on phagocytosis by mouse alveolar macrophages. Our microscopy (light, epifluorescence, confocal) and flow cytometry data show that IgM greatly enhances the clearance of small particles (about 1–2 micron) by these macrophages. There is an inverse relationship between IgM-mediated clearance by macrophages and the particle size; however, macrophages bind and internalize many different size particles coated with IgG. We also show that IgM avidly binds to small size late apoptotic cells or bodies (2–5 micron) and apoptotic microparticles (<2 µm) released from dying cells. IgM also promotes the binding and uptake of microparticle-coated beads.

Conclusions/Significance

Therefore, while the shape of the particles is important for non-opsonized particle uptake, the particle size matters for antibody-mediated clearance by macrophages. IgM particularly promotes the clearance of small size particles. This finding may have wider implications in IgM-mediated clearing of antigens, microbial pathogens and dying cells by the host.  相似文献   

3.

Background

Scavenger receptors are important components of the innate immune system in the lung, allowing alveolar macrophages to bind and phagocytose numerous unopsonized targets. Mice with genetic deletions of scavenger receptors, such as SR-A and MARCO, are susceptible to infection or inflammation from inhaled pathogens or dusts. However, the signaling pathways required for scavenger receptor-mediated phagocytosis of unopsonized particles have not been characterized.

Methods

We developed a scanning cytometry-based high-throughput assay of macrophage phagocytosis that quantitates bound and internalized unopsonized latex beads. This assay allowed the testing of a panel of signaling inhibitors which have previously been shown to target opsonin-dependent phagocytosis for their effect on unopsonized bead uptake by human in vitro-derived alveolar macrophage-like cells. The non-selective scavenger receptor inhibitor poly(I) and the actin destabilizer cytochalasin D were used to validate the assay and caused near complete abrogation of bead binding and internalization, respectively.

Results

Microtubule destabilization using nocodazole dramatically inhibited bead internalization. Internalization was also significantly reduced by inhibitors of tyrosine kinases (genistein and herbimycin A), protein kinase C (staurosporine, chelerythrine chloride and Gö 6976), phosphoinositide-3 kinase (LY294002 and wortmannin), and the JNK and ERK pathways. In contrast, inhibition of phospholipase C by U-73122 had no effect.

Conclusion

These data indicate the utility of scanning cytometry for the analysis of phagocytosis and that phagocytosis of unopsonized particles has both shared and distinct features when compared to opsonin-mediated phagocytosis.  相似文献   

4.

Background

Pulmonary alveolar proteinosis (PAP) is a rare disease occurred by idiopathic (autoimmune) or secondary to particle inhalation. The in-air microparticle induced X-ray emission (in-air micro-PIXE) system performs elemental analysis of materials by irradiation with a proton microbeam, and allows visualization of the spatial distribution and quantitation of various elements with very low background noise. The aim of this study was to assess the secondary PAP due to inhalation of harmful particles by employing in-air micro-PIXE analysis for particles and intracellular iron in parafin-embedded lung tissue specimens obtained from a PAP patient comparing with normal lung tissue from a non-PAP patient. The iron inside alveolar macrophages was stained with Berlin blue, and its distribution was compared with that on micro-PIXE images.

Results

The elements composing particles and their locations in the PAP specimens could be identified by in-air micro-PIXE analysis, with magnesium (Mg), aluminum (Al), silicon (Si), phosphorus (P), sulfur (S), scandium (Sc), potassium (K), calcium (Ca), titanium (Ti), chromium (Cr), copper (Cu), manganase (Mn), iron (Fe), and zinc (Zn) being detected. Si was the major component of the particles. Serial sections stained by Berlin blue revealed accumulation of sideromacrophages that had phagocytosed the particles. The intracellular iron content of alveolar macrophage from the surfactant-rich area in PAP was higher than normal lung tissue in control lung by both in-air micro-PIXE analysis and Berlin blue staining.

Conclusion

The present study demonstrated the efficacy of in-air micro-PIXE for analyzing the distribution and composition of lung particles. The intracellular iron content of single cells was determined by simultaneous two-dimensional and elemental analysis of paraffin-embedded lung tissue sections. The results suggest that secondary PAP is associated with exposure to inhaled particles and accumulation of iron in alveolar macrophages.  相似文献   

5.

Background

Penetratin is a positively charged cell-penetrating peptide (CPP) that has the ability to bind negatively charged membrane components, such as glycosaminoglycans and anionic lipids. Whether this primary interaction of penetratin with these cell surface components implies that the peptide will be further internalized is not clear.

Methodology

Using mass spectrometry, the amount of internalized and membrane bound penetratin remaining after washings, were quantified in three different cell lines: wild type (WT), glycosaminoglycans- (GAGneg) and sialic acid-deficient (SAneg) cells. Additionally, the affinity and kinetics of the interaction of penetratin to membrane models composed of pure lipids and membrane fragments from the referred cell lines was investigated, as well as the thermodynamics of such interactions using plasmon resonance and calorimetry.

Principal Findings

Penetratin internalized with the same efficacy in the three cell lines at 1 µM, but was better internalized at 10 µM in SAneg>WT>GAGneg. The heat released by the interaction of penetratin with these cells followed the ranking order of internalization efficiency. Penetratin had an affinity of 10 nM for WT cells and µM for SAneg and GAGneg cells and model membrane of phospholipids. The remaining membrane-bound penetratin after cells washings was similar in WT and GAGneg cells, which suggested that these binding sites relied on membrane phospholipids. The interaction of penetratin with carbohydrates was more superficial and reversible while it was stronger with phospholipids, likely because the peptide can intercalate between the fatty acid chains.

Conclusion/Significance

These results show that accumulation and high-affinity binding of penetratin at the cell-surface do not reflect the internalization efficacy of the peptide. Altogether, these data further support translocation (membrane phospholipids interaction) as being the internalization pathway used by penetratin at low micromolecular concentration, while endocytosis is activated at higher concentration and requires accumulation of the peptide on GAG and GAG clustering.  相似文献   

6.

Background

The insulin receptor is localized in caveolae and is dependent on caveolae or cholesterol for signaling in adipocytes. When stimulated with insulin, the receptor is internalized.

Methodology/Principal Findings

We examined primary rat adipocytes by subcellular fractionation to examine if the insulin receptor was internalized in a caveolae-mediated process. Insulin induced a rapid, t1/2<3 min, endocytosis of the insulin receptor in parallel with receptor tyrosine autophosphorylation. Concomitantly, caveolin-1 was phosphorylated at tyrosine(14) and endocytosed. Vanadate increased the phosphorylation of caveolin-1 without affecting insulin receptor phosphorylation or endocytosis. Immunocapture of endosomal vesicles with antibodies against the insulin receptor co-captured caveolin-1 and immunocapture with antibodies against tyrosine(14)-phosphorylated caveolin-1 co-captured the insulin receptor, demonstrating that the insulin receptor was endocytosed together with tyrosine(14)-phosphorylated caveolin-1. By immunogold electron microscopy the insulin receptor and caveolin-1 were colocalized in endosome vesicles that resembled caveosomes. Clathrin was not endocytosed with the insulin receptor and the inhibitor of clathrin-coated pit-mediated endocytosis, chlorpromazine, did not inhibit internalization of the insulin receptor, while transferrin receptor internalization was inhibited.

Conclusion

It is concluded that in response to insulin stimulation the autophosphorylated insulin receptor in primary adipocytes is rapidly endocytosed in a caveolae-mediated process, involving tyrosine phosphorylation of caveolin-1.  相似文献   

7.

Purpose

Magnetic nanoparticles (MNPs) may be used for focal delivery of plasmids, drugs, cells, and other applications. Here we ask whether such particles are toxic to ocular structures.

Methods

To evaluate the ocular toxicity of MNPs, we asked if either 50 nm or 4 µm magnetic particles affect intraocular pressure, corneal endothelial cell count, retinal morphology including both cell counts and glial activation, or photoreceptor function at different time points after injection. Sprague-Dawley rats (n = 44) were injected in the left eye with either 50 nm (3 µl, 1.65 mg) or 4 µm (3 µl, 1.69 mg) magnetic particles, and an equal volume of PBS into the right eye. Electroretinograms (ERG) were used to determine if MNPs induce functional changes to the photoreceptor layers. Enucleated eyes were sectioned for histology and immunofluorescence.

Results

Compared to control-injected eyes, MNPs did not alter IOP measurements. ERG amplitudes for a-waves were in the 100–250 µV range and b-waves were in the 500–600 µV range, with no significant differences between injected and non-injected eyes. Histological sectioning and immunofluorescence staining showed little difference in MNP-injected animals compared to control eyes. In contrast, at 1 week, corneal endothelial cell numbers were significantly lower in the 4 µm magnetic particle-injected eyes compared to either 50 nm MNP- or PBS-injected eyes. Furthermore, iron deposition was detected after 4 µm magnetic particle but not 50 nm MNP injection.

Conclusions

Intravitreal or anterior chamber injections of MNPs showed little to no signs of toxicity on retinal structure, photoreceptor function or aqueous drainage in the eye. Our results suggest that MNPs are safe for intraocular use.  相似文献   

8.

Background

It has been generally well accepted that chronic inflammation is a necessary component of lung fibrosis but this concept has recently been challenged.

Methods

Using biochemical, histological, immunohistochemistry, and cellular analyses, we compared the lung responses (inflammation and fibrosis) to fibrogenic silica particles (2.5 and 25 mg/g lung) in Sprague-Dawley rats and NMRI mice.

Results

Rats treated with silica particles developed chronic and progressive inflammation accompanied by an overproduction of TNF-α as well as an intense lung fibrosis. Dexamethasone or pioglitazone limited the amplitude of the lung fibrotic reaction to silica in rats, supporting the paradigm that inflammation drives lung fibrosis.In striking contrast, in mice, silica induced only a limited and transient inflammation without TNF-α overproduction. However, mice developed lung fibrosis of a similar intensity than rats. The fibrotic response in mice was accompanied by a high expression of the anti-inflammatory and fibrotic cytokine IL-10 by silica-activated lung macrophages. In mice, IL-10 was induced only by fibrotic particles and significantly expressed in the lung of silica-sensitive but not silica-resistant strains of mice. Anti-inflammatory treatments did not control lung fibrosis in mice.

Conclusion

These results indicate that, beside chronic lung inflammation, a pronounced anti-inflammatory reaction may also contribute to the extension of silica-induced lung fibrosis and represents an alternative pathway leading to lung fibrosis.  相似文献   

9.
10.

Aim

Biomimetic nano-assembly formation offers a convenient and bio friendly approach to fabricate complex structures from simple components with sub-nanometer precision. Recently, biomimetic (employing microorganism/plants) synthesis of metal and inorganic materials nano-particles has emerged as a simple and viable strategy. In the present study, we have extended biological synthesis of nano-particles to organic molecules, namely the anticancer agent 5-fluorouracil (5-FU), using Aloe vera leaf extract.

Methodology

The 5-FU nano- particles synthesized by using Aloe vera leaf extract were characterized by UV, FT-IR and fluorescence spectroscopic techniques. The size and shape of the synthesized nanoparticles were determined by TEM, while crystalline nature of 5-FU particles was established by X-ray diffraction study. The cytotoxic effects of 5-FU nanoparticles were assessed against HT-29 and Caco-2 (human adenocarcinoma colorectal) cell lines.

Results

Transmission electron microscopy and atomic force microscopic techniques confirmed nano-size of the synthesized particles. Importantly, the nano-assembled 5-FU retained its anticancer action against various cancerous cell lines.

Conclusion

In the present study, we have explored the potential of biomimetic synthesis of nanoparticles employing organic molecules with the hope that such developments will be helpful to introduce novel nano-particle formulations that will not only be more effective but would also be devoid of nano-particle associated putative toxicity constraints.  相似文献   

11.

Background

Imbalance of iron homeostasis has been reported in sporadic Creutzfeldt-Jakob-disease (sCJD) affected human and scrapie infected animal brains, but the contribution of this phenotype to disease associated neurotoxicity is unclear.

Methodology/Principal Findings

Using cell models of familial prion disorders, we demonstrate that exposure of cells expressing normal prion protein (PrPC) or mutant PrP forms to a source of redox-iron induces aggregation of PrPC and specific mutant PrP forms. Initially this response is cytoprotective, but becomes increasingly toxic with time due to accumulation of PrP-ferritin aggregates. Mutant PrP forms that do not aggregate are not cytoprotective, and cells show signs of acute toxicity. Intracellular PrP-ferritin aggregates induce the expression of LC3-II, indicating stimulation of autophagy in these cells. Similar observations are noted in sCJD and scrapie infected hamster brains, lending credence to these results. Furthermore, phagocytosis of PrP-ferritin aggregates by astrocytes is cytoprotective, while culture in astrocyte conditioned medium (CM) shows no measurable effect. Exposure to H2O2, on the other hand, does not cause aggregation of PrP, and cells show acute toxicity that is alleviated by CM.

Conclusions/Significance

These observations suggest that aggregation of PrP in response to redox-iron is cytoprotective. However, subsequent co-aggregation of PrP with ferritin induces intracellular toxicity unless the aggregates are degraded by autophagosomes or phagocytosed by adjacent scavenger cells. H2O2, on the other hand, does not cause aggregation of PrP, and induces toxicity through extra-cellular free radicals. Together with previous observations demonstrating imbalance of iron homeostasis in prion disease affected brains, these observations provide insight into the mechanism of neurotoxicity by redox-iron, and the role of PrP in this process.  相似文献   

12.

Background

Plant viruses such as Cowpea mosaic virus (CPMV) are increasingly being developed for applications in nanobiotechnology including vaccine development because of their potential for producing large quantities of antigenic material in plant hosts. In order to improve efficacy of viral nanoparticles in these types of roles, an investigation of the individual cell types that interact with the particles is critical. In particular, it is important to understand the interactions of a potential vaccine with antigen presenting cells (APCs) of the immune system. CPMV was previously shown to interact with vimentin displayed on cell surfaces to mediate cell entry, but the expression of surface vimentin on APCs has not been characterized.

Methodology

The binding and internalization of CPMV by several populations of APCs was investigated both in vitro and in vivo by flow cytometry and fluorescence confocal microscopy. The association of the particles with mouse gastrointestinal epithelium and Peyer''s patches was also examined by confocal microscopy. The expression of surface vimentin on APCs was also measured.

Conclusions

We found that CPMV is bound and internalized by subsets of several populations of APCs both in vitro and in vivo following intravenous, intraperitoneal, and oral administration, and also by cells isolated from the Peyer''s patch following gastrointestinal delivery. Surface vimentin was also expressed on APC populations that could internalize CPMV. These experiments demonstrate that APCs capture CPMV particles in vivo, and that further tuning the interaction with surface vimentin may facilitate increased uptake by APCs and priming of antibody responses. These studies also indicate that CPMV particles likely access the systemic circulation following oral delivery via the Peyer''s patch.  相似文献   

13.
Activated peritoneal macrophages exhibiting phagocytosing capacity produced an electron-dense precipitate of formazan in contact sites of macrophage plasmalemma and phagocytosed yeast cells. No production of formazan occurred, when non-opsonized latex particles were ingested by macrophages. Formazan precipitation could be prevented by anaerobiosis but not by addition of cyanide.  相似文献   

14.

Background

Inhalation of particulates is a leading cause of the development of lung diseases and current understanding of the complex relationship between lung metabolism and airborne particulates is incomplete. It is well established that mechanical load is important in the development of the lung and in lung cell differentiation. The interaction between particle exposure and physical forces on alveolar macrophages is a physiologically relevant issue, but as yet understudied. This study examines the effect of cyclic hydrostatic pressure and cotton particles on synthesis of cytokines by human alveolar macrophages.

Methods

Alveolar macrophages were obtained from patients with lung disease, either from lavage samples or from lung tissue resection. The commonly used cell line THP-1 was included in the experiments. Cell cultures were exposed to cotton particles and/cyclic hydrostatic pressure (3 or 5 psi); control cultures were exposed to medium only. TNFα, IL-1β and IL-6 were assayed in the culture media using specific ELISAs. Cells were characterized using morphology and markers specific for macrophages (Jenner/Giemsa staining, CD14 and CD68).

Results

Exposure to cotton particles stimulated cytokine synthesis by macrophages from all three sources; exposure to cyclic hydrostatic pressure alone did not stimulate cytokine synthesis significantly. However, the combination of both particles and cyclic hydrostatic pressure increased the simulation of cytokine synthesis still further. Cell characterization demonstrated that the large majority of cells had a macrophage morphology and were positive for CD14 and CD68.

Conclusion

These data suggest an interaction between cyclic hydrostatic pressure and particulate exposure, which increases alveolar macrophage cytokine production. This interaction was only observed at the higher cyclic hydrostatic pressure. However, in patient samples, there was considerable variation in the amount by which secretion of an individual cytokine increased and there was also variation in the mechanosensitivity of cells from the three different sources. Cyclic hydrostatic pressure, therefore, may be an important modulator of the response of alveolar macrophages to cotton particles, but the source of the cells may be a confounding factor which demands further investigation.  相似文献   

15.

Background/Objectives

Human leishmaniases are parasitic diseases causing severe morbidity and mortality. No vaccine is available and numerous factors limit the use of current therapies. There is thus an urgent need for innovative initiatives to identify new chemotypes displaying selective activity against intracellular Leishmania amastigotes that develop and proliferate inside macrophages, thereby causing the pathology of leishmaniasis.

Methodology/Principal Findings

We have developed a biologically sound High Content Analysis assay, based on the use of homogeneous populations of primary mouse macrophages hosting Leishmania amazonensis amastigotes. In contrast to classical promastigote-based screens, our assay more closely mimics the environment where intracellular amastigotes are growing within acidic parasitophorous vacuoles of their host cells. This multi-parametric assay provides quantitative data that accurately monitors the parasitic load of amastigotes-hosting macrophage cultures for the discovery of leishmanicidal compounds, but also their potential toxic effect on host macrophages. We validated our approach by using a small set of compounds of leishmanicidal drugs and recently published chemical entities. Based on their intramacrophagic leishmanicidal activity and their toxicity against host cells, compounds were classified as irrelevant or relevant for entering the next step in the drug discovery pipeline.

Conclusions/Significance

Our assay represents a new screening platform that overcomes several limitations in anti-leishmanial drug discovery. First, the ability to detect toxicity on primary macrophages allows for discovery of compounds able to cross the membranes of macrophage, vacuole and amastigote, thereby accelerating the hit to lead development process for compounds selectively targeting intracellular parasites. Second, our assay allows discovery of anti-leishmanials that interfere with biological functions of the macrophage required for parasite development and growth, such as organelle trafficking/acidification or production of microbicidal effectors. These data thus validate a novel phenotypic screening assay using virulent Leishmania amastigotes growing inside primary macrophage to identify new chemical entities with bona fide drug potential.  相似文献   

16.

Background

Allergen-containing subpollen particles (SPP) are released from whole plant pollen upon contact with water or even high humidity. Because of their size SPP can preferentially reach the lower airways where they come into contact with surfactant protein (SP)-D. Our previous work demonstrated that SP-D increases the uptake of SPP by alveolar macrophages. In the present study, we investigated the uptake of SPP in human primary epithelial cells and the potential modulation by SP-D. The patho-physiological consequence was evaluated by measurement of pro-inflammatory mediators.

Methods

SPP were isolated from timothy grass and subsequently fluorescently labelled. Human primary bronchial epithelial cells were incubated with SPP or polystyrene particles (PP) in the presence and absence of surfactant protein D. In addition, different sizes and surface charges of the PP were studied. Particle uptake was evaluated by flow cytometry and confocal microscopy. Soluble mediators were measured by enzyme linked immunosorbent assay or bead array.

Results

SPP were taken up by primary epithelial cells in a dose dependent manner. This uptake was coincided with secretion of Interleukin (IL)-8. SP-D increased the fraction of bronchial epithelial cells that bound SPP but not the fraction of cells that internalized SPP. SPP-induced secretion of IL-8 was further increased by SP-D. PP were bound and internalized by epithelial cells but this was not modulated by SP-D.

Conclusions

Epithelial cells bind and internalize SPP and PP which leads to increased IL-8 secretion. SP-D promotes attachment of SPP to epithelial cells and may thus be involved in the inflammatory response to inhaled allergen.  相似文献   

17.
LC Kelley  SA Weed 《PloS one》2012,7(8):e44363

Background

Epidermal growth factor receptor (EGFR) internalization following ligand binding controls EGFR downstream pathway signaling activity. Internalized EGFR is poly-ubiquitinated by Cbl to promote lysosome-mediated degradation and signal downregulation. ACK1 is a non-receptor tyrosine kinase that interacts with ubiquitinated EGFR to facilitate EGFR degradation. Dynamic reorganization of the cortical actin cytoskeleton controlled by the actin related protein (Arp)2/3 complex is important in regulating EGFR endocytosis and vesicle trafficking. How ACK1-mediated EGFR internalization cooperates with Arp2/3-based actin dynamics during EGFR downregulation is unclear.

Methodology/Principal Findings

Here we show that ACK1 directly binds and phosphorylates the Arp2/3 regulatory protein cortactin, potentially providing a direct link to Arp2/3-based actin dynamics during EGFR degradation. Co-immunoprecipitation analysis indicates that the cortactin SH3 domain is responsible for binding to ACK1. In vitro kinase assays demonstrate that ACK1 phosphorylates cortactin on key tyrosine residues that create docking sites for adaptor proteins responsible for enhancing Arp2/3 nucleation. Analysis with phosphorylation-specific antibodies determined that EGFR-induced cortactin tyrosine phosphorylation is diminished coincident with EGFR degradation, whereas ERK1/2 cortactin phosphorylation utilized in promoting activation of the Arp2/3 regulator N-WASp is sustained during EGFR downregulation. Cortactin and ACK1 localize to internalized vesicles containing EGF bound to EGFR visualized by confocal microscopy. RNA interference and rescue studies indicate that ACK1 and the cortactin SH3 domain are essential for ligand-mediated EGFR internalization.

Conclusions/Significance

Cortactin is a direct binding partner and novel substrate of ACK1. Tyrosine phosphorylation of cortactin by ACK1 creates an additional means to amplify Arp2/3 dynamics through N-WASp activation, potentially contributing to the overall necessary tensile and/or propulsive forces utilized during EGFR endocytic internalization and trafficking involved in receptor degradation.  相似文献   

18.

Objective

An Asian dust storm (ADS) contains airborne particles that affect conditions such as asthma, but the mechanism of exacerbation is unclear. The objective of this study was to compare immune adjuvant effects and airway inflammation induced by airborne particles collected on ADS days and the original ADS soil (CJ-1 soil) in asthma model mice.

Methods

Airborne particles were collected on ADS days in western Japan. NC/Nga mice were co-sensitized by intranasal instillation with ADS airborne particles and/or Dermatophagoides farinae (Df), and with CJ-1 soil and/or Df for 5 consecutive days. Df-sensitized mice were stimulated with Df challenge intranasally at 7 days after the last Df sensitization. At 24 hours after challenge, serum allergen specific antibody, differential leukocyte count and inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were measured, and airway inflammation was examined histopathologically.

Results

Co-sensitization with ADS airborne particles and Df increased the neutrophil and eosinophil counts in BALF. Augmentation of airway inflammation was also observed in peribronchiolar and perivascular lung areas. Df-specific serum IgE was significantly elevated by ADS airborne particles, but not by CJ-1 soil. Levels of interleukin (IL)-5, IL-13, IL-6, and macrophage inflammatory protein-2 were higher in BALF in mice treated with ADS airborne particles.

Conclusion

These results suggest that substances attached to ADS airborne particles that are not in the original ADS soil may play important roles in immune adjuvant effects and airway inflammation.  相似文献   

19.

Background

Extracellular matrix (ECM) remodeling is predominantly mediated by fibroblasts using intracellular and extracellular pathways. Although it is well known that extracellular degradation of the ECM by proteases derived from cancer cells facilitates cellular invasion, the intracellular degradation of ECM components by cancer cells has not been clarified. The aim of this study was to characterize collagen internalization, which is the initial step of the intracellular degradation pathway in pancreatic cancer cells, in light of epithelial–mesenchymal transition (EMT).

Methodology/Principal Findings

We analyzed the function of collagen internalization in two pancreatic cancer cell lines, SUIT-2 and KP-2, and pancreatic stellate cells (PSCs) using Oregon Green 488-gelatin. PSCs had a strong ability for collagen uptake, and the pancreatic cancer cells also internalized collagen although less efficiently. The collagen internalization abilities of SUIT-2 and KP-2 cells were promoted by EMT induced by human recombinant transforming growth factor β1 (P<0.05). Expression of Endo180, a collagen uptake receptor, was high in mesenchymal pancreatic cancer cell lines, as determined by EMT marker expression (P<0.01). Quantitative RT-PCR and western blot analyses showed that Endo180 expression was also increased by EMT induction in SUIT-2 and KP-2 cells. Endo180 knockdown by RNA interference attenuated the collagen uptake (P<0.01) and invasive abilities (P<0.05) of SUIT-2 and KP-2 cells.

Conclusions/Significance

Pancreatic cancer cells are capable of collagen internalization, which is enhanced by EMT. This ECM clearance system may be a novel mechanism for cellular invasion and a potential therapeutic target in pancreatic cancer.  相似文献   

20.

Background

Inhaled steroid resistance is an obstacle to asthma control in asthmatic smokers. The reasons of this phenomenon are not yet entirely understood. Interaction of drug particles with environmental tobacco smoke (ETS) could change the aerodynamic profile of the drug through the particle coagulation phenomenon. Aim of the present study was to examine whether steroid particles interact with smoke when delivered in the presence of ETS.

Methods

Beclomethasone-hydrofluoralkane (BDP-HFA) pMDI particle profile was studied after a single actuation delivered in ambient air or in the presence of ETS in an experimental chamber using a light scattering Optical Particle Counter capable of measuring the concentrations of particle sized 0.3–1.0, 1.1–2.0, 2.1–3.0, 3.1–4.0, 4.1–5.0, and > 5.1 μm in diameter with a sampling time of one second. The number of drug particles delivered after a single actuation was measured as the difference between total particle number after drug delivery and background particle number. Two groups of experiments were carried out at different ambient background particle concentrations. Two-tail Student''s t-test was used for statistical analysis.

Results

When delivered in ambient air, over 90% of BDP-HFA particles were found in the 0.3–1.0 μm size class, while particles sized 1.1–2.0 μm and 2.1–3.0 represented less than 6.6% and 2.8% of total particles, respectively. However, when delivered in the presence of ETS, drug particle profile was modified, with an impressive decrease of 0.3–1.0 μm particles, the most represented particles resulting those sized 1.1–2.0 μm (over 66.6% of total particles), and 2.1–3.0 μm particles accounting up to 31% of total particles.

Conclusion

Our data suggest that particle interaction between inhaled BDP-HFA pMDI and ETS takes place in the first few seconds after drug delivery, with a decrease in smaller particles and a concurrent increase of larger particles. The resulting changes in aerosol particle profile might modify regional drug deposition with potential detriment to drug efficacy, and represent a new element of steroid resistance in smokers. Although the present study does not provide any functional or clinical assessment, it might be useful to advise smokers and non smokers with obstructive lung disease such as asthma or COPD, to avoid to act inhaled drugs in the presence of ETS in order to obtain the best therapeutic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号