首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six pathophysiologic mechanisms of a reduced single breath CO diffusing capacity are discussed and the usefulness of relating carbon monoxide (CO) uptake to the functioning alveolar volume (DL/VA, specific diffusing capacity) is illustrated for several pulmonary diseases. In patients with emphysema and pulmonary emboli (pulmonary vascular occlusive disease), reduced CO uptake is associated with significantly reduced DL/VA and is compatible with reduction of pulmonary capillary bed. In patients with pulmonary alveolar proteinosis, improvement in CO uptake and DL/VA follows lung lavage and suggests that lung units partially filled with proteinaceous material are responsible for hypoxemia, reduced CO uptake and reduced DL/VA. In most cases of radiation fibrosis, sarcoidosis and miscellaneous interstitial fibrosis, reduced CO uptake is associated with a normal DL/VA and suggests that loss of alveolar units, both capillaries and alveoli, has occurred. New regression equations for DL and DL/VA are established for children and adults. DL/VA is linearly related to height and independent of age and sex, while different predictive equations must be used for DL for the 5 through 17 and 18 through 76 age groups. The new regression equations for DL show better correlation in adults we studied over 50 years of age than previous regression equations which use a constant reduction of 2 to 3 ml CO per minute per mm of mercury for each 10 years of adult aging.  相似文献   

2.
The mouse is now the primary animal used to model a variety of lung diseases. To study the mechanisms that underlie such pathologies, phenotypic methods are needed that can quantify the pathologic changes. Furthermore, to provide translational relevance to the mouse models, such measurements should be tests that can easily be done in both humans and mice. Unfortunately, in the present literature few phenotypic measurements of lung function have direct application to humans. One exception is the diffusing capacity for carbon monoxide, which is a measurement that is routinely done in humans. In the present report, we describe a means to quickly and simply measure this diffusing capacity in mice. The procedure involves brief lung inflation with tracer gases in an anesthetized mouse, followed by a 1 min gas analysis time. We have tested the ability of this method to detect several lung pathologies, including emphysema, fibrosis, acute lung injury, and influenza and fungal lung infections, as well as monitoring lung maturation in young pups. Results show significant decreases in all the lung pathologies, as well as an increase in the diffusing capacity with lung maturation. This measurement of lung diffusing capacity thus provides a pulmonary function test that has broad application with its ability to detect phenotypic structural changes with most of the existing pathologic lung models.  相似文献   

3.
To determine the role of mediastinal shift after pneumonectomy (PNX) on compensatory responses, we performed right PNX in adult dogs and replaced the resected lung with a custom-shaped inflatable silicone prosthesis. Prosthesis was inflated (Inf) to prevent mediastinal shift, or deflated (Def), allowing mediastinal shift to occur. Thoracic, lung air, and tissue volumes were measured by computerized tomography scan. Lung diffusing capacities for carbon monoxide (DL(CO)) and its components, membrane diffusing capacity for carbon monoxide (Dm(CO)) and capillary blood volume (Vc), were measured at rest and during exercise by a rebreathing technique. In the Inf group, lung air volume was significantly smaller than in Def group; however, the lung became elongated and expanded by 20% via caudal displacement of the left hemidiaphragm. Consequently, rib cage volume was similar, but total thoracic volume was higher in the Inf group. Extravascular septal tissue volume was not different between groups. At a given pulmonary blood flow, DL(CO) and Dm(CO) were significantly lower in the Inf group, but Vc was similar. In one dog, delayed mediastinal shift occurred 9 mo after PNX; both lung volume and DL(CO) progressively increased over the subsequent 3 mo. We conclude that preventing mediastinal shift after PNX impairs recruitment of diffusing capacity but does not abolish expansion of the remaining lung or the compensatory increase in extravascular septal tissue volume.  相似文献   

4.
In recent decades the mouse has become the primary animal model of a variety of lung diseases. In models of emphysema or fibrosis, the essential phenotypic changes are best assessed by measurement of the changes in lung elasticity. To best understand specific mechanisms underlying such pathologies in mice, it is essential to make functional measurements that can reflect the developing pathology. Although there are many ways to measure elasticity, the classical method is that of the total lung pressure-volume (PV) curve done over the whole range of lung volumes. This measurement has been made on adult lungs from nearly all mammalian species dating back almost 100 years, and such PV curves also played a major role in the discovery and understanding of the function of pulmonary surfactant in fetal lung development. Unfortunately, such total PV curves have not been widely reported in the mouse, despite the fact that they can provide useful information on the macroscopic effects of structural changes in the lung. Although partial PV curves measuring just the changes in lung volume are sometimes reported, without a measure of absolute volume, the nonlinear nature of the total PV curve makes these partial ones very difficult to interpret. In the present study, we describe a standardized way to measure the total PV curve. We have then tested the ability of these curves to detect changes in mouse lung structure in two common lung pathologies, emphysema and fibrosis. Results showed significant changes in several variables consistent with expected structural changes with these pathologies. This measurement of the lung PV curve in mice thus provides a straightforward means to monitor the progression of the pathophysiologic changes over time and the potential effect of therapeutic procedures.  相似文献   

5.
In normal gravity, lung diffusing capacity (DL(CO)) and lung tissue volume (LTV; including pulmonary capillary blood volume) change in concert, for example, during shifts between upright and supine. Accordingly, DL(CO) and LTV might be expected to decrease together in sitting subjects in hypergravity due to peripheral pooling of blood and reduced central blood volume. Nine sitting subjects in a human centrifuge were exposed to one, two, and three times increased gravity in the head-to-feet direction (G(z+)) and rebreathed a gas containing trace amounts of acetylene and carbon monoxide. DL(CO) was 25.2 +/- 2.6, 20.0 +/- 2.1, and 16.7 +/- 1.7 ml. min(-1). mbar(-1) (means +/- SE) at 1, 2, and 3 G(z+), respectively (ANOVA P < 0.001). Corresponding values for LTV increased from 541 +/- 34 to 677 +/- 43, and 756 +/- 71 ml (P < 0.001) at 2 and 3 G(z+). Results are compatible with sequestration of blood in the dependent part of the pulmonary circulation just as in the systemic counterpart. DL(CO,) which under normoxic conditions is mainly determined by its membrane component, decreased despite an increased pulmonary capillary blood volume, most likely as a consequence of a less homogenous distribution of alveolar volume with respect to pulmonary capillary blood volume.  相似文献   

6.
Lung diffusing capacity has been reported variably in high-altitude newcomers and may be in relation to different pulmonary vascular resistance (PVR). Twenty-two healthy volunteers were investigated at sea level and at 5,050 m before and after random double-blind intake of the endothelin A receptor blocker sitaxsentan (100 mg/day) vs. a placebo during 1 wk. PVR was estimated by Doppler echocardiography, and exercise capacity by maximal oxygen uptake (Vo(2 max)). The diffusing capacities for nitric oxide (DL(NO)) and carbon monoxide (DL(CO)) were measured using a single-breath method before and 30 min after maximal exercise. The membrane component of DL(CO) (Dm) and capillary volume (Vc) was calculated with corrections for hemoglobin, alveolar volume, and barometric pressure. Altitude exposure was associated with unchanged DL(CO), DL(NO), and Dm but a slight decrease in Vc. Exercise at altitude decreased DL(NO) and Dm. Sitaxsentan intake improved Vo(2 max) together with an increase in resting and postexercise DL(NO) and Dm. Sitaxsentan-induced decrease in PVR was inversely correlated to DL(NO). Both DL(CO) and DL(NO) were correlated to Vo(2 max) at sea level (r = 0.41-0.42, P < 0.1) and more so at altitude (r = 0.56-0.59, P < 0.05). Pharmacological pulmonary vasodilation improves the membrane component of lung diffusion in high-altitude newcomers, which may contribute to exercise capacity.  相似文献   

7.
In athletic animals the spleen induces acute polycythemia by dynamic contraction that releases red blood cells into the circulation in response to increased O(2) demand and metabolic stress; when energy demand is relieved, the polycythemia is rapidly reversed by splenic relaxation. We have shown in adult foxhounds that splenectomy eliminates exercise-induced polycythemia, thereby reducing peak O(2) uptake and lung diffusing capacity for carbon monoxide (DL(CO)) as well as exaggerating preexisting DL(CO) impairment imposed by pneumonectomy (Dane DM, Hsia CC, Wu EY, Hogg RT, Hogg DC, Estrera AS, Johnson RL Jr. J Appl Physiol 101: 289-297, 2006). To examine whether the postsplenectomy reduction in DL(CO) leads to abnormalities in O(2) diffusion, ventilation-perfusion inequality, or hemodynamic function, we studied these animals via the multiple inert gas elimination technique at rest and during exercise at a constant workload equivalent to 50% or 80% of peak O(2) uptake while breathing 21% and 14% O(2) in balanced order. From rest to exercise after splenectomy, minute ventilation was significantly elevated with respect to O(2) uptake compared with exercise before splenectomy; cardiac output, O(2) delivery, and mean pulmonary and systemic arterial blood pressures were 10-20% lower, while O(2) extraction was elevated with respect to O(2) uptake. Ventilation-perfusion inequality was unchanged, but O(2) diffusing capacities of lung (DL(O2)) and peripheral tissue during exercise were lower with respect to cardiac output postsplenectomy by 32% and 25%, respectively. The relationship between DL(O2) and DL(CO) was unchanged by splenectomy. We conclude that the canine spleen regulates both convective and diffusive O(2) transport during exercise to increase maximal O(2) uptake.  相似文献   

8.
Measurements of nitric oxide (NO) pulmonary diffusing capacity (DL(NO)) multiplied by alveolar NO partial pressure (PA(NO)) provide values for alveolar NO production (VA(NO)). We evaluated applying a rapidly responding chemiluminescent NO analyzer to measure DL(NO) during a single, constant exhalation (Dex(NO)) or by rebreathing (Drb(NO)). With the use of an initial inspiration of 5-10 parts/million of NO with a correction for the measured NO back pressure, Dex(NO) in nine healthy subjects equaled 125 +/- 29 (SD) ml x min(-1) x mmHg(-1) and Drb(NO) equaled 122 +/- 26 ml x min(-1) x mmHg(-1). These values were 4.7 +/- 0.6 and 4.6 +/- 0.6 times greater, respectively, than the subject's single-breath carbon monoxide diffusing capacity (Dsb(CO)). Coefficients of variation were similar to previously reported breath-holding, single-breath measurements of Dsb(CO). PA(NO) measured in seven of the subjects equaled 1.8 +/- 0.7 mmHg x 10(-6) and resulted in VA(NO) of 0.21 +/- 0.06 microl/min using Dex(NO) and 0.20 +/- 0.6 microl/min with Drb(NO). Dex(NO) remained constant at end-expiratory oxygen tensions varied from 42 to 682 Torr. Decreases in lung volume resulted in falls of Dex(NO) and Drb(NO) similar to the reported effect of volume changes on Dsb(CO). These data show that rapidly responding chemiluminescent NO analyzers provide reproducible measurements of DL(NO) using single exhalations or rebreathing suitable for measuring VA(NO).  相似文献   

9.
Steady state estimates of the pulmonary diffusing capacity for carbon monoxide (DLCO) require measurement of the uptake and the average alveolar partial pressure of carbon monoxide (PACO). The expired alveolar sample obtained by different experimental methods and/or breathing patterns rarely represents the actual PACO. It is widely accepted that nonuniform distribution of ventilation, diffusion and perfusion causes discrepancies in the measurement of diffusing capacity. tan additional source of error in choosing PACO arises in the sampling time chosen by the experimental method. A theoretical study of a ramp-with-pause and a square breathing pattern demonstrates that the sample-time error exists even in the homogeneous lung. The study shows for the homogeneous lung that the correct fractional concentration of alveolar carbon monoxide (FAV) occurs at a time (TAV), one-half of a breathing period after the effective inspiration time (TI) for the two very different breathing patterns. TI is well-defined in relation to any breathing pattern which can be approximated by ramps and pauses. If TAV and the sample time chosen by the experimental method are known, then the measured DLCO can be corrected to the actual diffusing capacity (DL). The theory agrees with experimental results and computer simulations of inhomogeneous lungs from the literature. This agreement suggests that the theory for the homogeneous lung is also relevant to the inhomogeneous lung.  相似文献   

10.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are major causes of morbidity and mortality in the intensive care unit, but despite continuing research few effective therapies have been identified. In recent years, inhaled carbon monoxide (CO) has been reported to have cytoprotective effects in several animal models of tissue injury. We therefore evaluated the effects of inhaled CO in three different in vivo mouse models of ALI. Anesthetized C57BL/6 mice were ventilated with oxygen in the presence or absence of CO (500 parts per million) for 1 h before lung injury was induced by lipopolysaccharide (LPS) or oleic acid (OA) administration. Ventilation was then continued with the same gases for a further 2-3 h, with hemodynamic and respiratory parameters monitored throughout. Intratracheal LPS administration induced lung injury with alveolar inflammation (increased lavage fluid neutrophils, total protein, and cytokines). In contrast, intravenous LPS induced a predominantly vascular lung injury, with increased plasma TNF and increased neutrophil activation (surface Mac-1 upregulation and L-selectin shedding) and sequestration within the pulmonary vasculature. Intravenous OA produced deteriorations in lung function, reflected by changes in respiratory mechanics and blood gases and lavage fluid neutrophil accumulation. However, addition of CO to the inspired gas did not produce significant changes in the measured physiological or immunological parameters in the mouse models used in this study. Thus the results do not support the hypothesis that use of inhaled CO is beneficial in the treatment of ALI and ARDS.  相似文献   

11.
Lung volume reduction surgery (LVRS) improves lung function, respiratory symptoms, and exercise tolerance in selected patients with chronic obstructive pulmonary disease, who have heterogeneous emphysema. However, the reported effects of LVRS on gas exchange are variable, even when lung function is improved. To clarify how LVRS affects gas exchange in chronic obstructive pulmonary disease, 23 patients were studied before LVRS, 14 of whom were again studied afterwards. We performed measurements of lung mechanics, pulmonary hemodynamics, and ventilation-perfusion (Va/Q) inequality using the multiple inert-gas elimination technique. LVRS improved arterial Po? (Pa(O?)) by a mean of 6 Torr (P = 0.04), with no significant effect on arterial Pco? (Pa(CO?)), but with great variability in both. Lung mechanical properties improved considerably more than did gas exchange. Post-LVRS Pa(O?) depended mostly on its pre-LVRS value, whereas improvement in Pa(O(2)) was explained mostly by improved Va/Q inequality, with lesser contributions from both increased ventilation and higher mixed venous Po(2). However, no index of lung mechanical properties correlated with Pa(O?). Conversely, post-LVRS Pa(CO?) bore no relationship to its pre-LVRS value, whereas changes in Pa(CO?) were tightly related (r2 = 0.96) to variables, reflecting decrease in static lung hyperinflation (intrinsic positive end-expiratory pressure and residual volume/total lung capacity) and increase in airflow potential (tidal volume and maximal inspiratory pressure), but not to Va/Q distribution changes. Individual gas exchange responses to LVRS vary greatly, but can be explained by changes in combinations of determining variables that are different for oxygen and carbon dioxide.  相似文献   

12.
Although the left lung constitutes 42% of the total by weight and volume in dogs, carbon monoxide diffusing capacity (DL) after left pneumonectomy in adults falls less than 30% at rest, indicating a significant increase of DL in the remaining lung. DL normally increases during exercise, presumably by recruitment of alveolar capillaries and surface area as lung volume (Vs) and pulmonary blood flow (Qc) increase. We asked whether the increase of DL in the remaining lung after pneumonectomy in adult dogs could be explained by this kind of passive recruitment by the increased volume and Qc in the remaining lung. We measured the relationship between DL and Qc with a rebreathing technique at increasing treadmill loads in adult foxhounds, before and 6 mo after left pneumonectomy, and the relationship between DL and Vs by the same technique under anesthesia as Vs was expanded. DL was reduced by 29.1% at rest and 26.5% with heavy exercise after left pneumonectomy, indicating either recruitment or new growth in the right lung. With the assumption that the right lung normally receives 58% of the Qc and contains 58% of the DL, DL of the right lung increased with Qc in accordance with the following relationships before and after left pneumonectomy: right lung DL (before pneumonectomy) = 6.44 + 2.40(Qc) (r = 0.963) and right lung DL (after pneumonectomy) = 7.51 + 1.75(Qc) (r = 0.958). Only approximately 7% of the increase in DL from rest to peak exercise could be attributed to the increase in Vs during exercise before pneumonectomy and approximately 15% after pneumonectomy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We previously reported in weanling guinea pigs raised at high altitude (HA; 3,800 m) an elevated lung diffusing capacity estimated by morphometry from alveolar-capillary surface area, harmonic mean blood-gas barrier thickness, and pulmonary capillary blood volume (Vc) compared with litter-matched control animals raised at an intermediate altitude (IA; 1,200 m) (Hsia CCW, Polo Carbayo JJ, Yan X, Bellotto DJ. Respir Physiol Neurobiol 147: 105-115, 2005). To determine if HA-induced alveolar ultrastructural changes are associated with improved alveolar function, we measured lung diffusing capacity for carbon monoxide (DLCO), membrane diffusing capacity for carbon monoxide (DMCO), Vc, pulmonary blood flow, and lung volume by a rebreathing technique in litter-matched male weanling Hartley guinea pigs raised at HA or IA for 4 or 12 mo. Separate control animals were also raised and studied at sea level (SL). Resting measurements were obtained in the conscious nonsedated state. In HA animals compared with corresponding IA or SL controls, lung volume and hematocrit were significantly higher while pulmonary blood flow was lower. At a given pulmonary blood flow, DLCO and DMCO were higher in HA-raised animals than in control animals without a significant change in Vc. We conclude that 1) HA residence enhanced physiological diffusing capacity corresponding to that previously estimated on the basis of structural adaptation, 2) adaptation in diffusing capacity and its components should be interpreted with respect to pulmonary blood flow, and 3) this noninvasive rebreathing technique could be used to follow adaptive responses in small animals.  相似文献   

14.
The single-breath diffusing capacity of the lung for CO [DLCO(SB)] is considered a measure of the conductance of CO across the alveolar-capillary membrane and its binding with hemoglobin. Although incomplete mixing of inspired gas with alveolar gas could theoretically influence overall diffusion, conventional calculations of DLCO(SB) spuriously overestimate DLCO(SB) during short breath-holding periods when incomplete mixing of gas within the lung might have the greatest effect. Using the three-equation method to calculate DLCO(SB) which analytically accounts for changes in breath-hold time, we found that DLCO(SB) did not change with breath-hold time in control subjects but increased with increasing breath-hold time in both patients with asthma and patients with emphysema. The increase in DLCO(SB) with increasing breath-hold time correlated with the phase III slope of the single-breath N2 washout curve. We suggest that in patients with ventilation maldistribution, DLCO(SB) may be decreased for the shorter breath-hold maneuvers because overall diffusion is limited by the reduced transport of CO from the inspired gas through the alveolar gas prior to alveolar-capillary gas exchange.  相似文献   

15.
The effects of blood velocity on gas transport within the alveolar region of lungs, and on the lung diffusing capacity DL have for many years been regarded as negligible. The present work reports on a preliminary, two-dimensional investigation of CO convection-diffusion phenomenon within a pulmonary capillary. Numerical simulations were performed using realistic clinical and morphological parameter values, with discrete circular red blood cells (RBCs) moving with plasma in a single capillary. Steady-state simulations with stationary blood (RBCs and plasma) were performed to validate the model by comparison with published data. Results for RBCs moving at speeds varying from 1.0 mm/s to 10 mm/s, and for capillary hematocrit (Ht) from 5% to 55%, revealed an increase of up to 60% in DL, as compared to the stationary blood case. The increase in DL is more pronounced at low Ht (less than 25%) and high RBC speed and it seems to be caused primarily by the presence of plasma. The results also indicate that capillary blood convection affects DL not only by improving the plasma mixing in the capillary bed but also by replenishing the capillary with fresh (zero concentration) plasma, providing an additional reservoir for the consumption of CO. Our findings cast doubt on the current belief that an increase in the lung diffusing capacity of humans (for instance, during exercising), with fixed hematocrit, can only be accomplished by an increase in the lung volume effectively active in the respiration process.  相似文献   

16.
It has been shown that measurements of the diffusing capacity of the lung for CO made during a slow exhalation [DLCO(exhaled)] yield information about the distribution of the diffusing capacity in the lung that is not available from the commonly measured single-breath diffusing capacity [DLCO(SB)]. Current techniques of measuring DLCO(exhaled) require the use of a rapid-responding (less than 240 ms, 10-90%) CO meter to measure the CO concentration in the exhaled gas continuously during exhalation. DLCO(exhaled) is then calculated using two sample points in the CO signal. Because DLCO(exhaled) calculations are highly affected by small amounts of noise in the CO signal, filtering techniques have been used to reduce noise. However, these techniques reduce the response time of the system and may introduce other errors into the signal. We have developed an alternate technique in which DLCO(exhaled) can be calculated using the concentration of CO in large discrete samples of the exhaled gas, thus eliminating the requirement of a rapid response time in the CO analyzer. We show theoretically that this method is as accurate as other DLCO(exhaled) methods but is less affected by noise. These findings are verified in comparisons of the discrete-sample method of calculating DLCO(exhaled) to point-sample methods in normal subjects, patients with emphysema, and patients with asthma.  相似文献   

17.
The spleen acts as an erythrocyte reservoir in highly aerobic species such as the dog and horse. Sympathetic-mediated splenic contraction during exercise reversibly enhances convective O2 transport by increasing hematocrit, blood volume, and O2-carrying capacity. Based on theoretical interactions between erythrocytes and capillary membrane (Hsia CCW, Johnson RL Jr, and Shah D. J Appl Physiol 86: 1460-1467, 1999) and experimental findings in horses of a postsplenectomy reduction in peripheral O2-diffusing capacity (Wagner PD, Erickson BK, Kubo K, Hiraga A, Kai M, Yamaya Y, Richardson R, and Seaman J. Equine Vet J 18, Suppl: 82-89, 1995), we hypothesized that splenic contraction also augments diffusive O2 transport in the lung. Therefore, we have measured lung diffusing capacity (DL(CO)) and its components during exercise by a rebreathing technique in six adult foxhounds before and after splenectomy. Splenectomy eliminated exercise-induced polycythemia, associated with a 30% reduction in maximal O2 uptake. At any given pulmonary blood flow, DL(CO) was significantly lower after splenectomy owing to a lower membrane diffusing capacity, whereas pulmonary capillary blood volume changed variably; microvascular recruitment, indicated by the slope of the increase in DL(CO) with respect to pulmonary blood flow, was also reduced. We conclude that splenic contraction enhances both convective and diffusive O2 transport and provides another compensatory mechanism for maintaining alveolar O2 transport in the presence of restrictive lung disease or ambient hypoxia.  相似文献   

18.
A mathematical model of CO uptake from a single alveolus is modified to include stationary pulmonary blood arising from a pulmonary vascular obstruction. From this model an estimator model is developed that produces simultaneous estimations of the diffusing capacity of the lung for CO and the fraction of the pulmonary capillary blood that is stationary. The estimator model was tested using simulated data from uniform and non-uniform simulators and found to be only mildly sensitive to noise and incorrect values for the pulmonary capillary blood volume. Both the estimator model and breath-to-breath changes in the diffusing capacity of the lung for CO (exhaled) were found to be greatly affected by inhomogeneity of diffusing capacity and ventilation. At times both returned false positive results that limit their use as a screening test for stationary pulmonary blood. Although changes in CO uptake may at times indicate the presence of stationary pulmonary blood, the confounding effects of inhomogeneity of ventilation and diffusing capacity make the use of such changes impractical under most circumstances.  相似文献   

19.

Background

Reduced gas transfer in patients with pulmonary arterial hypertension (PAH) is traditionally attributed to remodeling and progressive loss of pulmonary arterial vasculature that results in decreased capillary blood volume available for gas exchange.

Methods

We tested this hypothesis by determination of lung diffusing capacity (DL) and its components, the alveolar capillary membrane diffusing capacity (Dm) and lung capillary blood volume (Vc) in 28 individuals with PAH in comparison to 41 healthy individuals, and in 19 PAH patients over time. Using single breath simultaneous measure of diffusion of carbon monoxide (DLCO) and nitric oxide (DLNO), DL and Dm were respectively determined, and Vc calculated. Dm and Vc were evaluated over time in relation to standard clinical indicators of disease severity, including brain natriuretic peptide (BNP), 6-minute walk distance (6MWD) and right ventricular systolic pressure (RVSP) by echocardiography.

Results

Both DLCO and DLNO were reduced in PAH as compared to controls and the lower DL in PAH was due to loss of both Dm and Vc (all p < 0.01). While DLCO of PAH patients did not change over time, DLNO decreased by 24 ml/min/mmHg/year (p = 0.01). Consequently, Dm decreased and Vc tended to increase over time, which led to deterioration of the Dm/Vc ratio, a measure of alveolar-capillary membrane functional efficiency without changes in clinical markers.

Conclusions

The findings indicate that lower than normal gas transfer in PAH is due to loss of both Dm and Vc, but that deterioration of Dm/Vc over time is related to worsening membrane diffusion.  相似文献   

20.
Noninvasive techniques for assessing cardiopulmonary function in small animals are limited. We previously developed a rebreathing technique for measuring lung volume, pulmonary blood flow, diffusing capacity for carbon monoxide (Dl(CO)) and its components, membrane diffusing capacity (Dm(CO)) and pulmonary capillary blood volume (Vc), and septal volume, in conscious nonsedated guinea pigs at rest. Now we have extended this technique to study guinea pigs during voluntary treadmill exercise with a sealed respiratory mask attached to a body vest and a test gas mixture containing 0.5% SF(6) or Ne, 0.3% CO, and 0.8% C(2)H(2) in 40% or 98% O(2). From rest to exercise, O(2) uptake increased from 12.7 to 25.5 ml x min(-1) x kg(-1) while pulmonary blood flow increased from 123 to 239 ml/kg. The measured Dl(CO), Dm(CO), and Vc increased linearly with respect to pulmonary blood flow as expected from alveolar microvascular recruitment; body mass-specific relationships were consistent with those in healthy human subjects and dogs studied with a similar technique. The results show that 1) cardiopulmonary interactions from rest to exercise can be measured noninvasively in guinea pigs, 2) guinea pigs exhibit patterns of exercise response and alveolar microvascular recruitment similar to those of larger species, and 3) the rebreathing technique is widely applicable to human ( approximately 70 kg), dog (20-30 kg), and guinea pig (1-1.5 kg). In theory, this technique can be extended to even smaller animals provided that species-specific technical hurdles can be overcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号