首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Lipoprotein lipase (LPL) hydrolysis the triglyceride core of circulating chylomicrons and very-low-density lipoprotein, and modulates the levels and lipid composition of low and high density lipoproteins. Worldwide, more than 20 mutations in the LPL gene have been identified in patients with familial LPL deficiency. Most of these mutations are clustered in the region encoded by exons 4, 5 and 6 which forms the proposed catalytic domain of LPL. In French Canadians who have the highest reported frequency for LPL deficiency, three common mutations in the LPL gene have been identified which account for approximately 97% of mutant genes in this group. Simple DNA-based tests for the detection of all these mutations have been developed for the screening for carriers of LPL deficiency. This will facilitate further studies of phenotypic expression in heterozygous carriers and assessment of the risk of atherosclerosis in these individuals.  相似文献   

3.
4.
5.
6.
The metabolism of radiolabelled 125I-low density lipoprotein (LDL) was studied in cultured human dermal fibroblasts to investigate potential mechanisms contributing to the accelerated development of cardiovascular disease in patients treated chronically with corticosteroids. Fibroblasts exposed for 48 hours to pooled lipoprotein-poor (d greater than 1.25 gm/ml) serum from glucocorticoid-treated patients showed an increased capacity to bind LDL (p less than .001) compared to cells incubated under identical conditions with pooled serum from controls. In addition, a significantly (p less than .001) reduced amount of soluble radioactive material appeared in the media indicating that exposure of fibroblasts to corticosteroid serum also impaired their capacity to degrade LDL. If this tendency of cultured cells to accumulate cholesterol-rich lipoprotein when exposed to constituents of serum from these patients is present in patients receiving long-term treatment with glucocorticoids, it might influence arterial lipid accumulation and accelerate their developing cardiovascular disease.  相似文献   

7.
Abundant evidence supports the hypothesis that cancer arises from normal cells through the stepwise accumulation of genetic mutations. The study of cells obtained from patients with cancer has identified numerous molecules and pathways that fundamentally contribute to malignant transformation; however, cancer cell lines are often difficult to isolate or maintain, and the cell lines that are available for experimentation represent only a small subset of late-stage human cancers. Recent work has elucidated the role of telomerase in regulating human cell lifespan and has enabled the development of new experimental systems to study human cancer. This review highlights the recent progress in combining genetic methods and primary human cells to understand the role of specific genes and pathways in cancer pathogenesis.  相似文献   

8.

Background

Human skin has the capacity to metabolise foreign chemicals (xenobiotics), but knowledge of the various enzymes involved is incomplete. A broad-based unbiased proteomics approach was used to describe the profile of xenobiotic metabolising enzymes present in human skin and hence indicate principal routes of metabolism of xenobiotic compounds. Several in vitro models of human skin have been developed for the purpose of safety assessment of chemicals. The suitability of these epidermal models for studies involving biotransformation was assessed by comparing their profiles of xenobiotic metabolising enzymes with those of human skin.

Methodology/Principal Findings

Label-free proteomic analysis of whole human skin (10 donors) was applied and analysed using custom-built PROTSIFT software. The results showed the presence of enzymes with a capacity for the metabolism of alcohols through dehydrogenation, aldehydes through dehydrogenation and oxidation, amines through oxidation, carbonyls through reduction, epoxides and carboxylesters through hydrolysis and, of many compounds, by conjugation to glutathione. Whereas protein levels of these enzymes in skin were mostly just 4–10 fold lower than those in liver and sufficient to support metabolism, the levels of cytochrome P450 enzymes were at least 300-fold lower indicating they play no significant role. Four epidermal models of human skin had profiles very similar to one another and these overlapped substantially with that of whole skin.

Conclusions/Significance

The proteomics profiling approach was successful in producing a comprehensive analysis of the biotransformation characteristics of whole human skin and various in vitro skin models. The results show that skin contains a range of defined enzymes capable of metabolising different classes of chemicals. The degree of similarity of the profiles of the in vitro models indicates their suitability for epidermal toxicity testing. Overall, these results provide a rational basis for explaining the fate of xenobiotics in skin and will aid chemical safety testing programmes.  相似文献   

9.
A model is proposed for the metabolism of plasma lipoprotein apoproteins based on studies of a hyperlipoproteinemic subject who received 2.5 mCi[3H]leucine intravenously. Measurements included apoprotein specific activities (apo-B and apo-C) of very low density lipoprotein (VLDL) and of three low density lipoprotein (LDL) subspecies, Sf 17 LDL, Sf 10 LDL, and Sf 4 LDL. Activities of plasma albumin were also determined. The data were analyzed using a compartmental model and the SAAM computer program. A chain-like series of compartments were necessary to simulate plasma VLDL kinetics, suggesting a multistep delipidation process. The data are consistent with the notion that VLDL is the dominant LDL precursor. Two modes of conversion from VLDL to LDL are required. After partial delipidation some VLDL is converted to the Sf 17 LDL, while the remainder undergoes further delipidation before being converted to Sf 4 LDL, the major plasma LDL component. Some direct release of LDL into plasma had to be introduced to fit the data, about 24% of total LDL production. The three LDL subspecies follow a precursor-product relationship (Sf 17 leads to Sf 10 leads to Sf 4). The analysis also indicates that in using labeled leucine as a tracer, the slow exchange of leucine with the total body protein pool must be considered in trying to resolve the LDL subsystem and in the estimation of steady-state apoprotein levels. In view of the fact that the proposed model is based predominantly on the data from a single patient, no generalizations can be made about parameter values. The study is most valuable, however, in pointing out metabolic pathways not considered before and in calling attention to variables that must be considered in the design of experiments to study lipoprotein kinetics.  相似文献   

10.
Role of genetics and drug metabolism in human cancer risk   总被引:13,自引:0,他引:13  
D W Nebert 《Mutation research》1991,247(2):267-281
The research field concerning responses to drugs having a hereditary basis is called 'pharmacogenetics'. At least 5 dozen pharmacogenetic polymorphisms have been described in clinical medicine; many are responsible for marked differences in genetic predisposition toward toxicity or cancer. Three are detailed here: the acetylation, the debrisoquine, and the AH locus polymorphism. All 3 are very common among the United States' population: 1 in 2 is a 'slow acetylator', 1 in 12 is a 'poor metabolizer' for more than 2 dozen commonly prescribed drugs in the debrisoquine panel, and the CYP1A1 and CYP1A2 (cytochromes P(1)450 and P(3)450) genes are highly inducible by cigarette smoke in 1 of 10 patients. Differences in xenobiotic metabolism between individuals in the same family can be greater than 200-fold, suggesting that occupationally hazardous chemicals, as well as prescribed drugs having a narrow therapeutic window, might cause strikingly dissimilar effects between patients of differing genotypes. Our ultimate goal is 'preventive toxicology', i.e. the development of simple, inexpensive, unequivocal and sensitive assays to predict individual risk of toxicity or cancer. These tests could help the individual in choosing a safer life style or place of work and might aid the physician in deciding which drug to prescribe.  相似文献   

11.
Apurinic/apyrimidinic (AP) sites are common mutagenic and cytotoxic DNA lesions. Ape1 is the major human repair enzyme for abasic sites and incises the phosphodiester backbone 5′ to the lesion to initiate a cascade of events aimed at removing the AP moiety and maintaining genetic integrity. Through resequencing of genomic DNA from 128 unrelated individuals, and searching published reports and sequence databases, seven amino acid substitution variants were identified in the repair domain of human Ape1. Functional characterization revealed that three of the variants, L104R, E126D and R237A, exhibited ~40–60% reductions in specific incision activity. A fourth variant, D283G, is similar to the previously characterized mutant D283A found to exhibit ~10% repair capacity. The most common substitution (D148E; observed at an allele frequency of 0.38) had no impact on endonuclease and DNA binding activities, nor did a G306A substitution. A G241R variant showed slightly enhanced endonuclease activity relative to wild-type. In total, four of seven substitutions in the repair domain of Ape1 imparted reduced function. These reduced function variants may represent low penetrance human polymorphisms that associate with increased disease susceptibility.  相似文献   

12.
Primary rodent hepatocytes and hepatoma cell lines are commonly used as model systems to elucidate and study potential drug targets for metabolic diseases such as obesity and atherosclerosis. However, if therapies are to be developed, it is essential that our knowledge gained from these systems is translatable to that of human. Here, we have characterized lipid and lipoprotein metabolism in primary human hepatocytes for comparison to rodent primary hepatocytes and human hepatoma cell lines. Primary human hepatocytes were maintained in collagen coated dishes in confluent monolayers for up to 3 days. We found primary human hepatocytes were viable, underwent lipid synthesis, and were able to secret lipoproteins up to 3 days in culture. Furthermore, the lipoprotein profile secreted by primary human hepatocytes was comparable to that found in human plasma; this contrasts with primary rodent hepatocytes and human hepatoma cells. We also investigated the pharmacological effects of nicotinic acid (niacin, NA), a potent dyslipidemic drug, on hepatic lipid synthesis and lipoprotein secretion. We found NA increased the expression of ATP-binding cassette transporter A1 in primary human hepatocytes, which may potentially explain how NA increases plasma high-density lipoproteins in humans. In conclusion, primary human hepatocytes are a more relevant model to study lipid synthesis and lipoprotein secretion than hepatoma cells or rodent primary hepatocyte models. Further research needs to be done to maintain liver specific functions of primary human hepatocytes in prolonged cultures for these cells to be a viable model.  相似文献   

13.
A growing resource of methicillin-resistant Staphylococcus aureus (MRSA) genomes uncovers intriguing phylogeographic and recombination patterns and highlights challenges in identifying the source of these phenomena.  相似文献   

14.
Human vascular smooth muscle cells (hVSMC) rendered quiescent by maintenance under serum-free culture conditions for 48 h exhibited several metabolic responses, normally associated with proliferation, following exposure to low density lipoprotein (LDL). LDL induced a time- and dose- (half-maximally effective concentration, ED50 25.0 +/- 8 nM) dependent activation of S6 kinase which could be negated following pretreatment of hVSMC with 12-O-tetradecanoylphorbol-13-acetate (TPA) for 48 h. In myo-[3H]inositol-prelabeled hVSMC, LDL caused a rapid (maximum within 1 min) decrease in phosphatidylinositol 4,5-bisphosphate (35% p less than 0.001) and phosphatidylinositol 4-phosphate (20%, p less than 0.01) with a return to prestimulated levels within 5-10 min. LDL induced a concomitant increase in [3H]inositol phosphates for which the order of generation was inositol-tris greater than -bis greater than -mono phosphate and which reached threshold levels of significance (p less than 0.05) above control values within 1, 2, and 10 min, respectively. The effect of LDL on hVSMC phosphoinositide metabolism was dose-dependent (half-maximally effective concentration, ED50 32.1 +/- 5.0 nM). This concentration, like that for S6 kinase, approximates with the KD (5-21 nM) for high affinity binding of 125I-LDL to specific receptors (1.5 x 10(4) sites/cell) on hVSMC. LDL induced a rapid but transient translocation of protein kinase C from the cytosol to membranes as assessed using both immunoblotting and [3H] 4-beta-phorbol-12-13-dibutyrate-binding procedures. Exposure of quiescent hVSMC to LDL elevated intracellular pH (delta pH 0.30 +/- 0.03, p less than 0.001). Such alkalinization was prevented in the presence of Na+/K+ exchange inhibitors such as amiloride, dimethylamiloride, and ethylisopropylamiloride. In an investigation of the nuclear action of LDL, a time-dependent induction of both c-myc and c-fos was observed. Such LDL-induced expression of these nuclear proto-onco-genes was not detectable in protein kinase C down-regulated hVSMC. Nevertheless, in spite of the cascade of "growth-promotional" responses elicited by LDL in quiescent hVSMC, this lipoprotein alone (under serum-free conditions) was neither mitogenic in nuclear labeling experiments, nor could it support growth of hVSMC in culture. We demonstrate that LDL might function in a complementary/synergistic fashion with other weakly mitogenic (to VSMC) growth factors and suggest that activation of protein kinase C (vis à vis intrinsic tyrosine kinase characteristic of other growth factor receptors) may be crucial to the signal transduction pathway for LDL.  相似文献   

15.
Angiotensin (ANG) and kinin metabolizing enzymes, angiotensin-converting enzyme (ACE; EC 3.4.15.1), neutral endopeptidase-24.11 (NEP-24.11; EC 3.4.24.11), and aminopeptidase M (AmM; EC 3.4.11.2), have recently been identified in a purified skeletal muscle glycoprotein fraction. We have analyzed the cellular localization of these enzymes. In cultured human skeletal muscle adult myoblasts, myotubes, and fibroblasts, kinins and angiotensins were metabolized by NEP-24.11 and AmM but not by ACE. NEP-24.11 degraded ANG II, ANG III, and bradykinin (BK) and converted ANG I to the active metabolite ANG(1–7). ANG III was converted to the novel ANG IV metabolite [des-Arg1]ANG III by AmM. These data suggest that, due to their abundance in the body, skeletal muscle myocytes and fibroblasts may play a major role in modulation of the systemic and local effects of angiotensins and kinins. This role could be particularly important in individuals receiving treatment with ACE inhibitors.  相似文献   

16.
The amount and composition of human and animal blood plasma lipoproteins have been studied as affected by low temperature and high doses of ethanol. Results are presented. A conclusion about antiatherogenic properties of low doses of ethanol based on the data of its effect on the system of blood lipoproteins cannot be considered completely proved. Reliable interpretation of the results of the ethanol effect on lipoproteins and atherogenesis processes needs the further study of mechanisms of the ethanol effect on the exchange and modification of the basic classes of lipoproteins and their subfractions, many their peculiarities being not studied yet.  相似文献   

17.
Low density lipoprotein (LDL) undergoes qualitative changes when incubated with endothelial cells. Changes in LDL induced by cultured human endothelial cells were associated with release of substances reacting to thiobarbituric acid; they were prevented by addition of EDTA. Modification of LDL by human endothelium, therefore, appears to involve lipid peroxidation. Proneness of LDL to this process was indicated by its occurrence, to a smaller extent, on incubation in the absence of endothelium. Lipid peroxidation of LDL altered its electrophoretic mobility. Modified LDL, but not native LDL, was readily catabolised by human macrophages. Conditioning by human endothelium increased the rate of fractional catabolism of LDL in rabbits. If lipid peroxidation of LDL takes place in vivo it may promote conversion of macrophages to lipid-laden foam cells in the developing atheromatous plaque.  相似文献   

18.
The human hepatoma cell line Hep G2 was studied with respect to metabolism of human low-density lipoprotein (LDL). The Hep G2 cells bind, take up and degrade human LDL with a high-affinity saturable and with a low-affinity non-saturable component. The high-affinity binding possesses a KD of 25 nM-LDL and a maximal amount of binding of about 70 ng of LDL-apoprotein/mg of cell protein. The high-affinity binding, uptake and degradation of LDL by Hep G2 cells is dependent on the extracellular Ca2+ concentration and is down-regulated by the presence of fairly high concentrations of extracellular LDL. Incubation of the Hep G2 cells with LDL results in suppression of the intracellular cholesterol synthesis. It is concluded that the human hepatoma cell line Hep G2 possesses specific LDL receptors similar to the LDL receptors demonstrated on extrahepatic tissue cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号