首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Reactive oxygen species (ROS) play an important role in physiological and pathological processes. In recent years, a feed-forward regulation of the ROS sources has been reported. The interactions between the main cellular sources of ROS, such as mitochondria and NADPH oxidases, however, remain obscure. This work summarizes the latest findings on the role of cross talk between mitochondria and NADPH oxidases in pathophysiological processes. Mitochondria have the highest levels of antioxidants in the cell and play an important role in the maintenance of cellular redox status, thereby acting as an ROS and redox sink and limiting NADPH oxidase activity. Mitochondria, however, are not only a target for ROS produced by NADPH oxidase but also a significant source of ROS, which under certain conditions may stimulate NADPH oxidases. This cross talk between mitochondria and NADPH oxidases, therefore, may represent a feed-forward vicious cycle of ROS production, which can be pharmacologically targeted under conditions of oxidative stress. It has been demonstrated that mitochondria-targeted antioxidants break this vicious cycle, inhibiting ROS production by mitochondria and reducing NADPH oxidase activity. This may provide a novel strategy for treatment of many pathological conditions including aging, atherosclerosis, diabetes, hypertension, and degenerative neurological disorders in which mitochondrial oxidative stress seems to play a role. It is conceivable that the use of mitochondria-targeted treatments would be effective in these conditions.  相似文献   

2.
NADPH oxidase produces reactive oxygen species (ROS). Drosophila melanogaster has two homologs of NADPH oxidase, dNox and dDuox, with functions that remain unclear in vivo. To clarify these functions, two independent transgenic fly lines expressing dsRNA targeted for different portions of dDuox mRNA were used. In both flies, en-GAL4> UAS-dDuoxIR(976-1145) and en-GAL4> UAS-dDuoxIR(370-518), in which dDuox was knocked down selectively in the posterior area of the wing disc, the posterior compartment of the adult wings became paler and more fragile with wing veins that were indistinct by comparison with the anterior one. Fluorescence staining of the en-GAL4> UAS-dDuoxIR(976-1145) adult wings revealed that the ROS concentration in the posterior compartment was significantly lower than that in the anterior compartment. Moreover, in these flies, the posterior compartment of the wing imaginal disc showed a greater number of apoptotic cells detected by immunostaining with anti-cleaved caspase-3 antibody than those in the anterior compartment. Respective knockdown of tyrosine hydroxylase or dopa-decarboxylase showed paler wing blades in the posterior compartment similar to the phenotype of dDuox-knockdown files. Along with this observation, analysis of the catecholic and dityrosine components in the wings of adult flies proved that dDuox plays important roles in the stabilization of the cuticle structure of the wings via tyrosine cross-linking, the sclerotization and melanization processes possibly through ROS production. These dDuox-knockdown fly lines would be useful tools for further studying dDuox functions during the development of Drosophila.  相似文献   

3.
Cerebellar granule neurons (CGN) cultured in a medium containing 25 mM KCl and treated with staurosporine (ST) or transferred to a medium with 5 mM KCl (K5) die apoptotically. CGN death is mediated by an increase in reactive oxygen species (ROS) production. When CGN are treated with antioxidants all apoptotic parameters and cell death are markedly diminished, showing a central role for ROS in this process. Recently, it has been suggested that a possible ROS source involved in cell death is a NADPH oxidase. In that regard, we found expression in CGN of the components of NADPH proteins, p40phox, p47phox and p67phox, and p22phox, as well as three homologues of the catalytic subunit of this complex, NOX1, 2, and 4. The inhibition of NADPH oxidase with diphenylene iodonium or 4-(2-aminoethyl)benzenesulfonyl fluoride significantly reduced ROS production, NADPH oxidase activity, all the apoptotic events, and cell death induced by both K5 and ST. We conclude that ROS could be an early signal of apoptotic neuronal death and that NADPH oxidase, including NOX1, 2, and/or 4, could have a central role in apoptotic death induced by different conditions in these neurons.  相似文献   

4.
5.
The signal interactions between calcium (Ca2+) and reactive oxygen species (ROS) originated from plasma membrane NADPH oxidase in abscisic acid (ABA)-induced antioxidant defence were investigated in leaves of maize (Zea mays L.) seedlings. Treatment with ABA led to significant increases in the activity of plasma membrane NADPH oxidase, the production of leaf O2-, and the activities of several antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR). However, such increases were blocked by the pretreatment with Ca2+ chelator EGTA or Ca2+ channel blockers La3+ and verapamil, and NADPH oxidase inhibitors such as diphenylene iodonium (DPI), imidazole and pyridine. Treatment with Ca2+ also significantly induced the increases in NADPH oxidase activity, O2- production and the activities of antioxidant enzymes, and the increases were arrested by pretreatment with the NADPH oxidase inhibitors. Treatment with oxidative stress induced by paraquat, which generates O2-, led to the induction of antioxidant defence enzymes, and the up-regulation was suppressed by the pretreatment of Ca2+ chelator and Ca2+ channel blockers. Our data suggest that a cross-talk between Ca2+ and ROS originated from plasma membrane-bound NADPH oxidase is involved in the ABA signal transduction pathway leading to the induction of antioxidant enzyme activity, and Ca2+ functions upstream as well as downstream of ROS production in the signal transduction event in plants.  相似文献   

6.
7.
Endothelial cell ICAM-1 upregulation in response to TNF-alpha is mediated in part by reactive oxygen species (ROS) generated by the endothelial membrane-associated NADPH oxidase and occurs maximally after 4 h as the synthesis of new protein is required. However, thrombin-stimulated P-selectin upregulation is bimodal, the first peak occurring within minutes. We hypothesize that this early peak, which results from the release of preformed P-selectin from within Weibel-Palade bodies, is mediated in part by ROS generated from the endothelial membrane-associated xanthine oxidase. We found that this rapid expression of P-selectin on the surface of endothelial cells was accompanied by qualitatively parallel increases in ROS generation. Both P-selectin expression and ROS generation were inhibited, dose dependently, by the exogenous administration of disparate cell-permeable antioxidants and also by the inhibition of either of the known membrane-associated ROS-generating enzymes NADPH oxidase or xanthine oxidase. This rapid, posttranslational cell signaling response, mediated by ROS generated not only by the classical NADPH oxidase but also by xanthine oxidase, may well represent an important physiological trigger of the microvascular inflammatory response.  相似文献   

8.

Main conclusion

Solar ultraviolet irradiation regulates anthocyanin synthesis in apple peel by modulating the production of reactive oxygen species via plasma membrane NADPH oxidase instead of other pathways. The synthesis of anthocyanin in apple peels is dependent upon solar irradiation. Using 3-mm commercial glass to attenuate solar UV-A and UV-B light, we confirmed that solar UV irradiation regulated anthocyanin synthesis in apple peels after exposing previously bagged fruit to sunlight. During sunlight exposure, UV attenuation did not affect the expression of MdHY5, MdCOP1, or MdCRY2, but significantly lowered plasma membrane NADPH oxidase activity and superoxide anion concentrations. UV attenuation also reduced the expression levels of MdMYB10, MdPAL, MdCHS, MdF3H, MdDFR, MdANS and MdUFGT1, UDP-glycose:flavonoid 3-O-glycosyltransferase (UFGT) activity, and local concentrations of anthocyanin and quercetin-3-glycoside. In contrast, exogenous application of hydrogen peroxide could enhance anthocyanin and quercetin-3-glycoside synthesis. Xanthophyll cycle pool size on a chlorophyll basis was higher but its de-epoxidation was lower under direct sunlight irradiation than that under UV-attenuating conditions. This suggests that reactive oxygen species (ROS) produced in chloroplast are not major contributors to anthocyanin synthesis regulation. Inhibition of plasma membrane NADPH oxidase activity lowered the production of ROS through this mechanism, significantly inhibited the synthesis of anthocyanin, and increased the total production of ROS in apple peel under direct sunlight irradiation, suggesting that ROS produced via plasma membrane NADPH oxidase regulates anthocyanin synthesis. In summary, solar UV irradiation regulated anthocyanin synthesis in apple peels by modulating the production of ROS via plasma membrane NADPH oxidase.  相似文献   

9.
Vasoactive intestinal peptide (VIP) attenuates experimental acute pancreatitis (AP) by inhibition of cytokine production from inflammatory cells. It has been suggested that reactive oxygen species (ROS) as well as cytokines play pivotal roles in the early pathophysiology of AP. This study aimed to clarify the effect of VIP on the oxidative condition in pancreas, especially pancreatic acinar cells (acini). Hydrogen peroxide (H2O2)-induced intracellular ROS, assessed with CM-H2DCFDA, increased time- and dose-dependently in acini isolated from rats. Cell viability due to ROS-induced cellular damage, evaluated by MTS assay, was decreased with ≥100 μmol/L H2O2. VIP significantly inhibited ROS production from acini and increased cell viability in a dose-dependent manner. Expression of antioxidants including catalase, glutathione reductase, superoxide dismutase (SOD) 1 and glutathione peroxidase was not altered by VIP except for SOD2. Furthermore, Nox1 and Nox2, major components of NADPH oxidase, were expressed in pancreatic acini, and significantly increased after H2O2 treatment. Also, NADPH oxidase activity was provoked by H2O2. VIP decreased NADPH oxidase activity, which was abolished by PKA inhibitor H89. These results suggested that VIP affected the mechanism of ROS production including NADPH oxidase through induction of a cAMP/PKA pathway. In conclusion, VIP reduces oxidative stress in acini through the inhibition of NADPH oxidase. These results combined with findings of our previous study suggest that VIP exerts its protective effect in pancreatic damage, not only through an inhibition of cytokine production, but also through a reduction of the injury caused by oxidative stress.  相似文献   

10.
Nox 2 stimulates muscle differentiation via NF-kappaB/iNOS pathway   总被引:1,自引:0,他引:1  
The NF-kappaB/iNOS pathway stimulates muscle differentiation downstream of the PI 3-kinase/p38 MAPK pathway and diverse antioxidants block muscle differentiation. Therefore, we here investigated whether Nox 2 links those two myogenic pathways in H9c2 and C2C12 myoblasts. Compared with the proliferation stage, ROS generation was enhanced from the early stage of differentiation and gradually increased as differentiation progressed. Antioxidants suppressed the activated NF-kappaB/iNOS pathway during muscle differentiation. Nox 2 activity was also increased during muscle differentiation. Treatment with DPI and apocynin, two inhibitors of NADPH oxidase, and suppression of Nox 2 expression using siRNA, but not Nox 1, inhibited NADPH oxidase activity, muscle differentiation, and the NF-kappaB/iNOS pathway. Inhibition of PI 3-kinase and p38 MAPK suppressed the Nox 2/NF-kappaB/iNOS pathway. Nitric oxide restored muscle differentiation blocked by treatment with antioxidants or suppression of the Nox 2/NF-kappaB/iNOS pathway. In conclusion, Nox 2 stimulates muscle differentiation downstream of the PI 3-kinase/p38 MAPK pathway by activating the NF-kappaB/iNOS pathway via ROS generation.  相似文献   

11.
Our main objective was to determine whether reactive oxygen species (ROS), such as superoxide (O(2)(-)) and hydrogen peroxide (H(2)O(2)), contribute to altered pulmonary vascular responses in piglets with chronic hypoxia-induced pulmonary hypertension. Piglets were raised in either room air (control) or hypoxia for 3 days. The effect of the cell-permeable superoxide dismutase mimetic (SOD; M40403) and/or PEG-catalase (PEG-CAT) on responses to acetylcholine (ACh) was measured in endothelium-intact and denuded pulmonary resistance arteries (PRAs; 90-to-300-microm diameter). To determine whether NADPH oxidase is an enzymatic source of ROS, PRA responses to ACh were measured in the presence and absence of a NADPH oxidase inhibitor, apocynin (APO). A Western blot technique was used to assess expression of the NADPH oxidase subunit, p67phox. A lucigenin-derived chemiluminescence technique was used to measure ROS production stimulated by the NADPH oxidase substrate, NADPH. ACh responses, which were dilation in intact control arteries but constriction in both intact and denuded hypoxic arteries, were diminished by M40403, PEG-CAT, the combination of M40403 plus PEG-CAT, as well as by APO. Although total amounts were not different, membrane-associated p67phox was greater in PRAs from hypoxic compared with control piglets. NADPH-stimulated lucigenin luminescence was nearly doubled in PRAs from hypoxic vs. control piglets. We conclude that ROS generated by NADPH oxidase contribute to the aberrant pulmonary arterial responses in piglets exposed to 3 days of hypoxia.  相似文献   

12.
Reactive oxygen species (ROS) play a central role in the pathogenesis of many cardiovascular diseases, such as atherosclerosis and hypertension. Endothelial NADPH oxidase is the major source of intracellular ROS. The present study investigated the role of endothelial NADPH oxidase-derived ROS in angiopoietin-1 (Ang-1)-induced angiogenesis. Exposure of porcine coronary artery endothelial cells (PCAECs) to Ang-1 (250 ng/ml) for periods up to 30 min led to a transient and dose-dependent increase in intracellular ROS. Thirty minutes of pretreatment with the NADPH oxidase inhibitors diphenylene iodinium (DPI, 10 microM) and apocynin (200 microM) suppressed Ang-1-stimulated ROS. Pretreatment with either DPI or apocynin also significantly attenuated Ang-1-induced Akt and p44/42 MAPK phosphorylation. In addition, inhibition of NADPH oxidase significantly suppressed Ang-1-induced endothelial cell migration and sprouting from endothelial spheroids. Using mouse heart microvascular endothelial cells from wild-type (WT) mice and mice deficient in the p47(phox) component of NADPH oxidase (p47(phox-/-)), we found that although Ang-1 stimulated intracellular ROS, Akt and p42/44 MAPK phosphorylation, and cell migration in WT cells, the responses were strikingly suppressed in cells from the p47(phox-/-) mice. Furthermore, exposure of aortic rings from p47(phox-/-) mice to Ang-1 demonstrated fewer vessel sprouts than WT mice. Inhibition of the Tie-2 receptor inhibited Ang-1-induced endothelial migration and vessel sprouting. Together, our data strongly suggest that endothelial NADPH oxidase-derived ROS play a critical role in Ang-1-induced angiogenesis.  相似文献   

13.
Redox signaling is emerging as an essential mechanism in the regulation of biological activities of the cell. The HGF/c-Met signaling pathway has been implicated as a key regulator of the cellular redox homeostasis and oxidative stress. We previously demonstrated that genetic deletion of c-Met in hepatocytes disrupts redox homeostasis by a mechanism involving NADPH oxidase. Here, we were focused to address the mechanism of NADPH oxidase regulation by HGF/c-Met signaling in primary mouse hepatocytes and its relevance. HGF induced a biphasic mechanism of NADPH oxidase regulation. The first phase employed the rapid increase in production of ROS as signaling effectors to activate the Nrf2-mediated protective response resulting in up-regulation of the antioxidant proteins, such as NAD(P)H quinone oxidoreductase and γ-glutamylcysteine synthetase. The second phase operated under a prolonged HGF exposure, caused a suppression of the NADPH oxidase components, including NOX2, NOX4, p22 and p67, and was able to abrogate the TGFβ-induced ROS production and improve cell viability. In conclusion, HGF/c-Met induces a Nrf2-mediated protective response by a double mechanism driven by NADPH oxidase.  相似文献   

14.
Lysophosphatidic acid (LPA) is produced by tumor cells and is present in the ascites fluid of ovarian cancer patients. To determine the role of endogenous LPA in the ovarian cancer cell line SKOV3, we treated cells with the LPA receptor antagonist VPC32183 and found that it inhibited cell growth and induced apoptosis. Exogenous LPA further stimulated ERK and Akt phosphorylation and NF-κB activity. To determine if reactive oxygen species (ROS), which have been implicated as second messengers in cell signaling, were also involved in LPA signaling, we treated cells with the NADPH oxidase inhibitor diphenyleneiodonium (DPI), and antioxidants N-acetyl cysteine, EUK-134 and curcumin, and showed that all blocked LPA-dependent NF-κB activity and cell proliferation. DPI and EUK-134 also inhibited Akt and ERK phosphorylation. LPA was shown to stimulate dichlorofluorescein fluorescence, though not in the presence of DPI, apocynin (an inhibitor of NADPH oxidase), VPC32183, or PEG-catalase. Akt phosphorylation was also inhibited by PEG-catalase and apocynin. These data indicate that NADPH oxidase is a major source of ROS and H(2)O(2) is critical for LPA-mediated signaling. Thus, LPA acts as a growth factor and prevents apoptosis in SKOV3 cells by signaling through redox-dependent activation of ERK, Akt, and NF-κB-dependent signaling pathways.  相似文献   

15.
Otoconia are biominerals of the vestibular system that are indispensable for the perception of gravity. Despite their importance, the process of otoconia genesis is largely unknown. Reactive oxygen species (ROS) have been recognized for their toxic effects in antimicrobial host defense as well as in aging and carcinogenesis. Enzymes evolved for ROS production belong to the recently discovered NADPH oxidase (Nox) enzyme family . Here we show that the inactivation of a regulatory subunit, NADPH oxidase organizer 1 (Noxo1), resulted in the severe balance deficit seen in the spontaneous mutant "head slant" (hslt) mice whose phenotype was rescued by Noxo1 transgenes. Wild-type Noxo1 was expressed in the vestibular and cochlear epithelia and was required for ROS production by an oxidase complex. In contrast, the hslt mutation of Noxo1 was biochemically inactive and led to an arrest of otoconia genesis, characterized by a complete lack of calcium carbonate mineralization and an accumulation of otoconial protein, otoconin-90/95 (OC-90/95). These results suggest that ROS generated by a Noxo1-dependent vestibular oxidase are critical for otoconia formation and may be required for interactions among otoconial components. Noxo1 mutants implicate a constructive developmental role for ROS, in contrast to their previously described toxic effects.  相似文献   

16.
Accumulative indoxyl sulfate (IS) retained in chronic kidney disease (CKD) can potentiate vascular endothelial dysfunction, and herein, we aim at elucidating the underlying mechanisms from the perspective of possible association between reactive oxygen species (ROS) and RhoA/ROCK pathway. IS-treated nephrectomized rats are administered with antioxidants including NADPH oxidase inhibitor apocynin, SOD analog tempol, and mitochondrion-targeted SOD mimetic mito-TEMPO to scavenge ROS, or ROCK inhibitor fasudil to obstruct RhoA/ROCK pathway. First, we find in response to IS stimulation, antioxidants treatments suppress increased aortic ROCK activity and expression levels. Additionally, ROCK blockade prevent IS-induced increased NADPH oxidase expression (mainly p22phox and p47phox), mitochondrial and intracellular ROS (superoxide and hydrogen peroxide) generation, and decreased Cu/Zn-SOD expression in thoracic aortas. Apocynin, mito-TEMPO, and tempol also reverse these markers of oxidative stress. These results suggest that IS induces excessive ROS production and ROCK activation involving a circuitous relationship in which ROS activate ROCK and ROCK promotes ROS overproduction. Finally, ROS and ROCK depletion attenuate IS-induced decrease in nitric oxide (NO) production and eNOS expression levels, and alleviate impaired vasomotor responses including increased vasocontraction to phenylephrine and decreased vasorelaxation to acetylcholine, thereby preventing cardiovascular complications accompanied by CKD. Taken together, excessive ROS derived from NADPH oxidase and mitochondria coordinate with RhoA/ROCK activation in a form of positive reciprocal relationship to induce endothelial dysfunction through disturbing endothelium-dependent NO signaling upon IS stimulation in CKD status.  相似文献   

17.
Previous studies have shown that N-methyl-D-aspartate (NMDA) receptor activation results in production of reactive oxygen species (ROS) and activation of extracellular signal-regulated kinase (ERK) in hippocampal area CA1. In addition, application of ROS to hippocampal slices has been shown to result in activation of ERK in area CA1. To determine whether these events were linked causally, we investigated whether ROS are required for NMDA receptor-dependent activation of ERK. In agreement with previous studies, we found that treatment of hippocampal slices with NMDA resulted in activation of ERK in area CA1. The NMDA receptor-dependent activation of ERK was either blocked or attenuated by a number of antioxidants, including the general antioxidant N-acetyl-L-cysteine (L-NAC), the superoxide-scavenging enzyme superoxide dismutase (SOD), the membrane-permeable SOD mimetic Mn(III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), the hydrogen peroxide-scavenging enzyme catalase, and the catalase mimetic ebselen. The NMDA receptor-dependent activation of ERK also was blocked by the NADPH oxidase inhibitor diphenylene iodonium (DPI) and was absent in mice that lacked p47(phox), one of the required protein components of NADPH oxidase. Taken together, our results suggest that ROS production, especially superoxide production via NADPH oxidase, is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1.  相似文献   

18.
Reactive oxygen species (ROS) produced by activated astrocytes have been considered to be involved in the pathogenesis of neurodegenerative diseases, while NADPH oxidase is an essential enzyme involved in ROS-mediated signal transduction. The goal of the present study was to determine whether NADPH oxidase plays a role in ROS generation and cell survival in rat astrocytes. We found that the release of ROS in rat astrocytes was significantly increased by stimulation with calcium ionophore or opsonized zymosan, which are known to trigger a respiration burst in phagocytes by the NADPH oxidase pathway. Further study indicated that diphenylene iodonium (DPI), an inhibitor of NADPH oxidase, significantly suppressed the increase of ROS release caused by the calcium ionophore or opsonized zymosan. Cell survival assay and fluorescence double dyeing with acridine orange and ethidium bromide showed that DPI dose- and time-dependently decreased the viability of normal astrocytes, whereas exogenous supplementation of H2O2 can reverse the survival of DPI-treated astrocytes. For the first time, our results suggest that NADPH oxidase is an important enzyme for the generation of ROS in astrocytes, and the ROS generated by NADPH oxidase play an essential role in astrocyte survival.  相似文献   

19.
Nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) mediated generation of reactive oxygen species (ROS) was originally identified as the powerful host defense machinery against microorganism in phagocytes. But recent reports indicated that some non-phagocytic cells also have the NADPH oxidase activity, and the ROS produced by it may act as cell signal molecule. But as far as today, whether the NADPH oxidase also plays similar role in phagocyte has not been paid much attention. Utilizing the undifferentiated HL-60 promyelocytic leukemia cells as a model, the aim of the present study was to determine whether NADPH oxidase plays a role on ROS generation in undifferentiated HL-60, and the ROS mediated by it was essential for cell's survival. For the first time, we verified that the release of ROS in undifferentiated HL-60 was significantly increased by the stimulation with Calcium ionophore or opsonized zymosan, which are known to trigger respiration burst in phagocytes by NADPH oxidase pathway. Diphenylene iodonium (DPI) or apocynin (APO), two inhibitors of NADPH oxidase, significantly suppressed the increasing of ROS caused by opsonized zymosan. Cell survival assay and fluorescence double dyeing with acridine orange and ethidium bromide showed that DPI and APO, as well as superoxide dismutase (SOD) and catalase (CAT) concentration-dependently decreased the viability of undifferentiated HL-60 cells, whereas exogenous H2O2 can rescue the cells from death obviously. Our results suggested that the ROS, generated by NADPH oxidase play an essential role in the survival of undifferentiated HL-60 cells.  相似文献   

20.
Proinflammatory cytokines such as interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) enhance degradation of cartilage-specific, type II collagen by matrix metalloproteinase-13 (MMP-13). We investigated the previously unknown role of H-Ras and reactive oxygen species (ROS) in the cytokine induction of MMP-13 gene expression in human articular chondrocytes by using pharmacological inhibitors, RNA interference (RNAi) and antioxidants. Manumycin A, an inhibitor of H-Ras farnesylation by farnesyltransferase, suppressed IL-1β- and TNF-α-induced MMP-13 mRNA and protein expression. Small interfering RNA (siRNA)-mediated H-Ras silencing down-regulated MMP-13 mRNA and protein induction by IL-1β and TNF-α. Nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase/NOX) inhibitor, diphenyleneiodonium (DPI) suppressed cytokine-induced MMP-13 expression and superoxide production. Apocynin, another NOX inhibitor, also diminished MMP-13 induction. Deoxyglucose an antimetabolite of glucose metabolism reduced MMP-13 increase. Role of NOX-mediated ROS production was reaffirmed by the observation that the antioxidants, trolox, nordihydroguaiaretic acid (NDGA), quercetin and resveratrol downregulated cytokine-induced MMP-13 mRNA and protein expression. These results provide strong pharmacological and genetic evidence for the implication of H-Ras and NADPH oxidase-generated superoxide production in MMP-13 gene regulation by IL-1β and TNF-α. These proteins could be potentially targeted for therapeutic inhibition of MMP-13-driven cartilage erosion by using H-Ras and NOX inhibitors and antioxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号