首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Serpins are protease inhibitors that play essential roles in the down-regulation of extracellular proteolytic cascades. The core serpin domain is highly conserved, and typical serpins are encoded with a molecular size of 35–50 kDa. Here, we describe a novel 93-kDa protein that contains two complete, tandemly arrayed serpin domains. This twin serpin, SPN93, was isolated from the larval hemolymph of the large beetle Tenebrio molitor. The N-terminal serpin domain of SPN93 forms a covalent complex with the Spätzle-processing enzyme, a terminal serine protease of the Toll signaling cascade, whereas the C-terminal serpin domain of SPN93 forms complexes with a modular serine protease and the Spätzle-processing enzyme-activating enzyme, which are two different enzymes of the cascade. Consequently, SPN93 inhibited β-1,3-glucan-mediated Toll proteolytic cascade activation in an in vitro system. Site-specific proteolysis of SPN93 at the N-terminal serpin domain was observed after activation of the Toll proteolytic cascade in vivo, and down-regulation of SPN93 by RNAi sensitized β-1,3-glucan-mediated larval death. Therefore, SPN93 is the first serpin that contains twin tandemly arrayed and functionally active serpin domains that have a regulatory role in the larval Toll proteolytic signaling cascade.  相似文献   

2.
The mechanism of serine proteases prominently illustrates how charged amino acid residues and proton transfer events facilitate enzyme catalysis. Here we present an ultrahigh resolution (0.93 Å) x-ray structure of a complex formed between trypsin and a canonical inhibitor acting through a substrate-like mechanism. The electron density indicates the protonation state of all catalytic residues where the catalytic histidine is, as expected, in its neutral state prior to the acylation step by the catalytic serine. The carboxyl group of the catalytic aspartate displays an asymmetric electron density so that the Oδ2–Cγ bond appears to be a double bond, with Oδ2 involved in a hydrogen bond to His-57 and Ser-214. Only when Asp-102 is protonated on Oδ1 atom could a density functional theory simulation reproduce the observed electron density. The presence of a putative hydrogen atom is also confirmed by a residual mFobsDFcalc density above 2.5 σ next to Oδ1. As a possible functional role for the neutral aspartate in the active site, we propose that in the substrate-bound form, the neutral aspartate residue helps to keep the pKa of the histidine sufficiently low, in the active neutral form. When the histidine receives a proton during the catalytic cycle, the aspartate becomes simultaneously negatively charged, providing additional stabilization for the protonated histidine and indirectly to the tetrahedral intermediate. This novel proposal unifies the seemingly conflicting experimental observations, which were previously seen as either supporting the charge relay mechanism or the neutral pKa histidine theory.  相似文献   

3.
The Toll signaling pathway, an essential innate immune response in invertebrates, is mediated via the serine protease cascade. Once activated, the serine proteases are irreversibly inactivated by serine protease inhibitors (serpins). Recently, we identified three serpin-serine protease pairs that are directly involved in the regulation of Toll signaling cascade in a large beetle, Tenebrio molitor. Of these, the serpin SPN48 was cleaved by its target serine protease, Spätzle-processing enzyme, at a noncanonical P1 residue of the serpin''s reactive center loop. To address this unique cleavage, we report the crystal structure of SPN48, revealing that SPN48 exhibits a native conformation of human antithrombin, where the reactive center loop is partially inserted into the center of the largest β-sheet of SPN48. The crystal structure also shows that SPN48 has a putative heparin-binding site that is distinct from those of the mammalian serpins. Ensuing biochemical studies demonstrate that heparin accelerates the inhibition of Spätzle-processing enzyme by a proximity effect in targeting the SPN48. Our finding provides the molecular mechanism of how serpins tightly regulate innate immune responses in invertebrates.  相似文献   

4.
5.
Cospin (PIC1) from Coprinopsis cinerea is a serine protease inhibitor with biochemical properties similar to those of the previously characterized fungal serine protease inhibitors, cnispin from Clitocybe nebularis and LeSPI from Lentinus edodes, classified in the family I66 of the MEROPS protease inhibitor classification. In particular, it exhibits a highly specific inhibitory profile as a very strong inhibitor of trypsin with K(i) in the picomolar range. Determination of the crystal structure revealed that the protein has a β-trefoil fold. Site-directed mutagenesis and mass spectrometry results have confirmed Arg-27 as the reactive binding site for trypsin inhibition. The loop containing Arg-27 is positioned between the β2 and β3 strands, distinguishing cospin from other β-trefoil-fold serine protease inhibitors in which β4-β5 or β5-β6 loops are involved in protease inhibition. Biotoxicity assays of cospin on various model organisms revealed a strong and specific entomotoxic activity against Drosophila melanogaster. The inhibitory inactive R27N mutant was not entomotoxic, associating toxicity with inhibitory activity. Along with the abundance of cospin in fruiting bodies of C. cinerea and the lack of trypsin-like proteases in the C. cinerea genome, these results suggest that cospin and its homologs are effectors of a fungal defense mechanism against fungivorous insects that function by specific inhibition of serine proteases in the insect gut.  相似文献   

6.
A common motif found in invertebrate serine proteases involved in immunity and development is the clip domain, proposed to regulate catalytic activity or protein-protein interactions within proteolytic cascades. Snake functions in a cascade that patterns the Drosophila embryo, and provides an accessible model for exploring the structural requirements for clip domain function. We tested Snake zymogens bearing charged-to-alanine mutations in the clip domain for their ability to rescue embryos lacking endogenous Snake and for their interactions by S2 cell co-transfection with upstream Gastrulation Defective and downstream Easter in the protease cascade. Of 13 single and multiple substitutions, one double mutant in a predicted protruding region exhibited a severe defect in embryonic rescue but showed only minimal defects in the co-transfection assay. We discuss implications of these and other results for potential biological roles of the Snake clip domain and for use of the in vitro assay in predicting protease behavior.  相似文献   

7.
8.
Since the discovery that, despite the active site complexity, only three gene products suffice to obtain active recombinant [FeFe]-hydrogenase, significant light has been shed on this process. Both the source of the CO and CN(-) ligands to iron and the assembly site of the catalytic subcluster are known, and an apo structure of HydF has been published recently. However, the nature of the substrate(s) for the synthesis of the bridging dithiolate ligand to the subcluster remains to be established. From both spectroscopy and model chemistry, it is predicted that an amine function in this ligand plays a central role in catalysis, acting as a base in the heterolytic cleavage of hydrogen.  相似文献   

9.
The lectin pathway is an antibody-independent activation route of the complement system. It provides immediate defense against pathogens and altered self-cells, but it also causes severe tissue damage after stroke, heart attack, and other ischemia reperfusion injuries. The pathway is triggered by target binding of pattern recognition molecules leading to the activation of zymogen mannan-binding lectin-associated serine proteases (MASPs). MASP-2 is considered as the autonomous pathway-activator, while MASP-1 is considered as an auxiliary component. We evolved a pair of monospecific MASP inhibitors. In accordance with the key role of MASP-2, the MASP-2 inhibitor completely blocks the lectin pathway activation. Importantly, the MASP-1 inhibitor does the same, demonstrating that MASP-1 is not an auxiliary but an essential pathway component. We report the first Michaelis-like complex structures of MASP-1 and MASP-2 formed with substrate-like inhibitors. The 1.28 Å resolution MASP-2 structure reveals significant plasticity of the protease, suggesting that either an induced fit or a conformational selection mechanism should contribute to the extreme specificity of the enzyme.  相似文献   

10.
11.
Dachshund (Dac) is a highly conserved nuclear protein that is distantly related to the Ski/Sno family of corepressor proteins. In Drosophila, Dac is necessary and sufficient for eye development and, along with Eyeless (Ey), Sine oculis (So), and Eyes absent (Eya), forms the core of the retinal determination (RD) network. In vivo and in vitro experiments suggest that members of the RD network function together in one or more complexes to regulate the expression of downstream targets. For example, Dac and Eya synergize in vivo to induce ectopic eye formation and they physically interact through conserved domains. Dac contains two highly conserved domains, named DD1 and DD2, but no function has been assigned to either of them in an in vivo context. We performed structure-function studies to understand the relationship between the conserved domains of Dac and the rest of the protein and to determine the function of each domain during development. We show that only DD1 is essential for Dac function and while DD2 facilitates DD1, it is not absolutely essential in spite of more than 500 million years of conservation. Moreover, the physical interaction between Eya and DD2 is not required for the genetic synergy between the two proteins. Finally, we show that DD1 also plays a central role for nuclear localization of Dac.  相似文献   

12.
13.
14.
Clotting is critical in limiting hemolymph loss and initiating wound healing in insects as in vertebrates. It is also an important immune defense, quickly forming a secondary barrier to infection, immobilizing bacteria and thereby promoting their killing. However, hemolymph clotting is one of the least understood immune responses in insects. Here, we characterize fondue (fon; CG15825), an immune-responsive gene of Drosophila melanogaster that encodes an abundant hemolymph protein containing multiple repeat blocks. After knockdown of fon by RNAi, bead aggregation activity of larval hemolymph is strongly reduced, and wound closure is affected. fon is thus the second Drosophila gene after hemolectin (hml), for which a knockdown causes a clotting phenotype. In contrast to hml-RNAi larvae, clot fibers are still observed in samples from fon-RNAi larvae. However, clot fibers from fon-RNAi larvae are more ductile and longer than in wt hemolymph samples, indicating that Fondue might be involved in cross-linking of fiber proteins. In addition, fon-RNAi larvae exhibit melanotic tumors and constitutive expression of the antifungal peptide gene Drosomycin (Drs), while fon-RNAi pupae display an aberrant pupal phenotype. Altogether, our studies indicate that Fondue is a major hemolymph protein required for efficient clotting in Drosophila.  相似文献   

15.
Toll-like receptor 4 (TLR4) and its coreceptor MD-2 recognize bacterial lipopolysaccharide (LPS) and signal the innate immune response. Two single nucleotide polymorphisms (SNPs) of human TLR4, D299G and T399I, have been identified and suggested to be associated with LPS hyporesponsiveness. Moreover, the SNPs have been proposed to be associated with a variety of infectious and noninfectious diseases. However, how the SNPs affect the function of TLR4 remains largely unknown. Here, we report the crystal structure of the human TLR4 (D299G/T399I)·MD-2·LPS complex at 2.4 Å resolution. The ternary complex exhibited an agonistic “m”-shaped 2:2:2 architecture that was similar to that of the human wild type TLR4·MD-2·LPS complex. Local structural differences that might affect the binding of the ligands were observed around D299G, but not around T399I, SNP site.  相似文献   

16.
Toll-like receptor (TLR) activation relies on biochemical recognition of microbial molecules and localization of the TLR within specific cellular compartments. Cell surface TLRs largely recognize bacterial membrane components, and intracellular TLRs are exclusively involved in sensing nucleic acids. Here we show that TLR11, an innate sensor for the Toxoplasma protein profilin, is an intracellular receptor that resides in the endoplasmic reticulum. The 12 membrane-spanning endoplasmic reticulum-resident protein UNC93B1 interacts directly with TLR11 and regulates the activation of dendritic cells in response to Toxoplasma gondii profilin and parasitic infection in vivo. A deficiency in functional UNC93B1 protein abolished TLR11-dependent IL-12 secretion by dendritic cells, attenuated Th1 responses against T. gondii, and dramatically enhanced susceptibility to the parasite. Our results reveal that the association with UNC93B1 and the intracellular localization of TLRs are not unique features of nucleic acid-sensing TLRs but is also essential for TLR11-dependent recognition of T. gondii profilin and for host protection against this parasite.  相似文献   

17.
Mannan-binding lectin (MBL)-associated serine proteases, MASP-1 and MASP-2, have been thought to autoactivate when MBL/ficolin·MASP complexes bind to pathogens triggering the complement lectin pathway. Autoactivation of MASPs occurs in two steps: 1) zymogen autoactivation, when one proenzyme cleaves another proenzyme molecule of the same protease, and 2) autocatalytic activation, when the activated protease cleaves its own zymogen. Using recombinant catalytic fragments, we demonstrated that a stable proenzyme MASP-1 variant (R448Q) cleaved the inactive, catalytic site Ser-to-Ala variant (S646A). The autoactivation steps of MASP-1 were separately quantified using these mutants and the wild type enzyme. Analogous mutants were made for MASP-2, and rate constants of the autoactivation steps as well as the possible cross-activation steps between MASP-1 and MASP-2 were determined. Based on the rate constants, a kinetic model of lectin pathway activation was outlined. The zymogen autoactivation rate of MASP-1 is ∼3000-fold higher, and the autocatalytic activation of MASP-1 is about 140-fold faster than those of MASP-2. Moreover, both activated and proenzyme MASP-1 can effectively cleave proenzyme MASP-2. MASP-3, which does not autoactivate, is also cleaved by MASP-1 quite efficiently. The structure of the catalytic region of proenzyme MASP-1 R448Q was solved at 2.5 Å. Proenzyme MASP-1 R448Q readily cleaves synthetic substrates, and it is inhibited by a specific canonical inhibitor developed against active MASP-1, indicating that zymogen MASP-1 fluctuates between an inactive and an active-like conformation. The determined structure provides a feasible explanation for this phenomenon. In summary, autoactivation of MASP-1 is crucial for the activation of MBL/ficolin·MASP complexes, and in the proenzymic phase zymogen MASP-1 controls the process.  相似文献   

18.
An important functional property of protein protease inhibitors is their stability to proteolysis. Mesotrypsin is a human trypsin that has been implicated in the proteolytic inactivation of several protein protease inhibitors. We have found that bovine pancreatic trypsin inhibitor (BPTI), a Kunitz protease inhibitor, inhibits mesotrypsin very weakly and is slowly proteolyzed, whereas, despite close sequence and structural homology, the Kunitz protease inhibitor domain of the amyloid precursor protein (APPI) binds to mesotrypsin 100 times more tightly and is cleaved 300 times more rapidly. To define features responsible for these differences, we have assessed the binding and cleavage by mesotrypsin of APPI and BPTI reciprocally mutated at two nonidentical residues that make direct contact with the enzyme. We find that Arg at P1 (versus Lys) favors both tighter binding and more rapid cleavage, whereas Met (versus Arg) at P′2 favors tighter binding but has minimal effect on cleavage. Surprisingly, we find that the APPI scaffold greatly enhances proteolytic cleavage rates, independently of the binding loop. We draw thermodynamic additivity cycles analyzing the interdependence of P1 and P′2 substitutions and scaffold differences, finding multiple instances in which the contributions of these features are nonadditive. We also report the crystal structure of the mesotrypsin·APPI complex, in which we find that the binding loop of APPI displays evidence of increased mobility compared with BPTI. Our data suggest that the enhanced vulnerability of APPI to mesotrypsin cleavage may derive from sequence differences in the scaffold that propagate increased flexibility and mobility to the binding loop.  相似文献   

19.
We report the crystal structure of two variants of Drosophila melanogaster insulin-like peptide 5 (DILP5) at a resolution of 1.85 Å. DILP5 shares the basic fold of the insulin peptide family (T conformation) but with a disordered B-chain C terminus. DILP5 dimerizes in the crystal and in solution. The dimer interface is not similar to that observed in vertebrates, i.e. through an anti-parallel β-sheet involving the B-chain C termini but, in contrast, is formed through an anti-parallel β-sheet involving the B-chain N termini. DILP5 binds to and activates the human insulin receptor and lowers blood glucose in rats. It also lowers trehalose levels in Drosophila. Reciprocally, human insulin binds to the Drosophila insulin receptor and induces negative cooperativity as in the human receptor. DILP5 also binds to insect insulin-binding proteins. These results show high evolutionary conservation of the insulin receptor binding properties despite divergent insulin dimerization mechanisms.  相似文献   

20.
Protein misfolding has a key role in several neurological disorders including Parkinson's disease. Although a clear mechanism for such proteinopathic diseases is well established when aggregated proteins accumulate in the cytosol, cell nucleus, endoplasmic reticulum and extracellular space, little is known about the role of protein aggregation in the mitochondria. Here we show that mutations in both human and fly PINK1 result in higher levels of misfolded components of respiratory complexes and increase in markers of the mitochondrial unfolded protein response. Through the development of a genetic model of mitochondrial protein misfolding employing Drosophila melanogaster, we show that the in vivo accumulation of an unfolded protein in mitochondria results in the activation of AMP-activated protein kinase-dependent autophagy and phenocopies of pink1 and parkin mutants. Parkin expression acts to clear mitochondria with enhanced levels of misfolded proteins by promoting their autophagic degradation in vivo, and refractory to Sigma P (ref(2)P), the Drosophila orthologue of mammalian p62, is a critical downstream effector of this quality control pathway. We show that in flies, a pathway involving pink1, parkin and ref(2)P has a role in the maintenance of a viable pool of cellular mitochondria by promoting organellar quality control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号