首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first step of protein synthesis is catalyzed by aminoacyl-tRNA synthetases. In addition, certain mammalian tRNA synthetases link protein synthesis to cytokine signaling pathways. In particular, human tyrosyl-tRNA synthetase (TyrRS) can be split by proteolysis into two fragments having distinct cytokine activities. One of the TyrRS fragments (mini TyrRS) contains features identical to those in CXC chemokines (like interleukin-8) that also act as angiogenic factors. Here mini TyrRS (but not full-length TyrRS) is shown to stimulate chemotaxis of endothelial cells in vitro and stimulate angiogenesis in each of two in vivo animal models. The angiogenic activity of mini TyrRS can be opposed by anti-angiogenic chemokines like IP-10. Thus, a biological fragment of human tyrosyl-tRNA synthetase links protein synthesis to regulation of angiogenesis.  相似文献   

2.
Aminoacyl-tRNA synthetases, essential components of the cytoplasmic translation apparatus, also have nuclear functions that continue to be elucidated. However, little is known about how the distribution between cytoplasmic and nuclear compartments is controlled. Using a combination of methods, here we showed that human tyrosyl-tRNA synthetase (TyrRS) distributes to the nucleus and that the nuclear import of human TyrRS is regulated by its cognate tRNA(Tyr). We identified a hexapeptide motif in the anticodon recognition domain that is critical for nuclear import of the synthetase. Remarkably, this nuclear localization signal (NLS) sequence motif is also important for interacting with tRNA(Tyr). As a consequence, mutational alteration of the hexapeptide simultaneously attenuated aminoacylation and nuclear localization. Because the NLS is sterically blocked when the cognate tRNA is bound to TyrRS, we hypothesized that the nuclear distribution of TyrRS is regulated by tRNA(Tyr). This expectation was confirmed by RNAi knockdown of tRNA(Tyr) expression, which led to robust nuclear import of TyrRS. Further bioinformatics analysis showed that to have nuclear import of TyrRS directly controlled by tRNA(Tyr) in higher organisms, the NLS of lower eukaryotes was abandoned, whereas the new NLS was evolved from an anticodon-binding hexapeptide motif. Thus, higher organisms developed a strategy to make tRNA a regulator of the nuclear trafficking of its cognate synthetase. The design in principle should coordinate nuclear import of a tRNA synthetase with the demands of protein synthesis in the cytoplasm.  相似文献   

3.
The single tyrosyl-tRNA synthetase (TyrRS) gene in trypanosomatid genomes codes for a protein that is twice the length of TyrRS from virtually all other organisms. Each half of the double-length TyrRS contains a catalytic domain and an anticodon-binding domain; however, the two halves retain only 17% sequence identity to each other. The structural and functional consequences of this duplication and divergence are unclear. TyrRS normally forms a homodimer in which the active site of one monomer pairs with the anticodon-binding domain from the other. However, crystal structures of Leishmania major TyrRS show that, instead, the two halves of a single molecule form a pseudo-dimer resembling the canonical TyrRS dimer. Curiously, the C-terminal copy of the catalytic domain has lost the catalytically important HIGH and KMSKS motifs characteristic of class I aminoacyl-tRNA synthetases. Thus, the pseudo-dimer contains only one functional active site (contributed by the N-terminal half) and only one functional anticodon recognition site (contributed by the C-terminal half). Despite biochemical evidence for negative cooperativity between the two active sites of the usual TyrRS homodimer, previous structures have captured a crystallographically-imposed symmetric state. As the L. major TyrRS pseudo-dimer is inherently asymmetric, conformational variations observed near the active site may be relevant to understanding how the state of a single active site is communicated across the dimer interface. Furthermore, substantial differences between trypanosomal TyrRS and human homologs are promising for the design of inhibitors that selectively target the parasite enzyme.  相似文献   

4.
Liu J  Yang XL  Ewalt KL  Schimmel P 《Biochemistry》2002,41(48):14232-14237
Aminoacyl-tRNA synthetases catalyze the attachment of amino acids to their cognate tRNAs. A link was recently established between protein biosynthesis and cytokine signal transduction. Human tyrosyl-tRNA synthetase can be split into two fragments, each of which has a distinct cytokine function. This activity is specific to the human enzyme. It is absent in the enzymes from lower organisms such as bacteria and yeast. Here, yeast tyrosyl-tRNA synthetase (TyrRS), which lacks cytokine activity, was used as a model to explore how a human tyrosyl-tRNA synthetase during evolution acquired novel functions beyond aminoacylation. We found that a rationally designed mutant yeast TyrRS(ELR) gained cytokine function. The mutant yeast enzyme gained this function without sacrifice of aminoacylation activity. Therefore, relatively simple alteration of a basic structural motif imparts cytokine activity to a tRNA synthetase while preserving its canonical function. Further work established that mutational switching of a yeast protein to a mammalian-like cytokine was specific to this synthetase and not to just any yeast ortholog of a mammalian cytokine.  相似文献   

5.
While native human tyrosyl-tRNA synthetase (TyrRS) is inactive as a cell-signaling molecule, it can be split into two distinct cytokines. The enzyme is secreted under apoptotic conditions in culture where it is cleaved into an N-terminal fragment that harbors the catalytic site and into a C-domain fragment found only in the mammalian enzymes. The N-terminal fragment is an interleukin-8 (IL-8)-like cytokine, whereas the released C-domain is an endothelial-monocyte-activating polypeptide II (EMAP II)-like cytokine. Although the IL-8-like activity of the N-fragment depends on an ELR motif found in alpha-chemokines and conserved among mammalian TyrRSs, here we show that a similar (NYR) motif in the context of a lower eukaryote TyrRS does not confer the IL8-like activity. We also show that a heptapeptide from the C-domain has EMAP II-like chemotaxis activity for mononuclear phagocytes and polymorphonuclear leukocytes. Eukaryote proteins other than human TyrRS that have EMAP II-like domains have variants of the heptapeptide motif. Peptides based on these sequences are inactive as cytokines. Thus, the cytokine activities of split human TyrRS depend on highly differentiated motifs that are idiosyncratic to the mammalian system.  相似文献   

6.
Tyrosyl-tRNA synthetase from wheat germ   总被引:1,自引:0,他引:1  
Tyrosyl-tRNA synthetase (TyrRS) was purified 5,000-fold from wheat germ extract by ultracentrifugation, precipitation with ammonium acetate, and column chromatography. Under denaturing conditions the enzyme ran as a single band on SDS-polyacrylamide electrophoresis with an apparent Mr of 55,000. The native molecular weight determined by gel filtration was 110,000, suggesting a quaternary structure of an alpha 2 type for native TyrRS. Purified enzyme activity, based on the aminoacylation reaction, was studied in terms of Mg2+, ATP, pH, and KCl dependence. Optimum concentrations were 6 mM Mg2+, 4 mM ATP, and 200 mM KCl at pH 8. The Km values for ATP, tyrosine, and tRNA were 40, 3.3, and 1.5 microM, respectively. The instability of the TyrRS activity and the methods used for stabilizing it are discussed. In wheat germ extract we found a second tyrosylating activity that works with Escherichia coli tRNA, but not with wheat germ tRNA. We believe that this enzyme is the mitochondrial tyrosyl-tRNA synthetase of wheat germ.  相似文献   

7.
8.
Many human tRNA synthetases evolved alternative functions outside of protein synthesis. These functions are associated with over 200 splice variants (SVs), most of which are catalytic nulls that engender new biology. While known to regulate non-translational activities, little is known about structures resulting from natural internal ablations of any protein. Here, we report analysis of two closely related, internally deleted, SVs of homodimeric human tyrosyl-tRNA synthetase (TyrRS). In spite of both variants ablating a portion of the catalytic core and dimer-interface contacts of native TyrRS, each folded into a distinct stable structure. Biochemical and nuclear magnetic resonance (NMR) analysis showed that the internal deletion of TyrRSΔE2–4 SV gave an alternative, neomorphic dimer interface ‘orthogonal’ to that of native TyrRS. In contrast, the internal C-terminal splice site of TyrRSΔE2–3 prevented either dimerization interface from forming, and yielded a predominantly monomeric protein. Unlike ubiquitous TyrRS, the neomorphs showed clear tissue preferences, which were distinct from each other. The results demonstrate a sophisticated structural plasticity of a human tRNA synthetase for architectural reorganizations that are preferentially elicited in specific tissues.  相似文献   

9.
The Methanococcus jannaschii tRNA(Tyr)/TyrRS pair has been engineered to incorporate unnatural amino acids into proteins in E. coli. To reveal the structural basis for the altered specificity of mutant TyrRS for O-methyl-L-tyrosine (OMeTyr), the crystal structures for the apo wild-type and mutant M. jannaschii TyrRS were determined at 2.66 and 3.0 A, respectively, for comparison with the published structure of TyrRS complexed with tRNA(Tyr) and substrate tyrosine. A large conformational change was found for the anticodon recognition loop 257-263 of wild-type TyrRS upon tRNA binding in order to facilitate recognition of G34 of the anticodon loop through pi-stacking and hydrogen bonding interactions. Loop 133-143, which is close to the tRNA acceptor stem-binding site, also appears to be stabilized by interaction with the tRNA(Tyr). Binding of the substrate tyrosine results in subtle and cooperative movements of the side chains within the tyrosine-binding pocket. In the OMeTyr-specific mutant synthetase structure, the signature motif KMSKS loop and acceptor stem-binding loop 133-143 were surprisingly ordered in the absence of bound ATP and tRNA. The active-site mutations result in altered hydrogen bonding and steric interactions which favor binding of OMeTyr over L-tyrosine. The structure of the mutant and wild-type TyrRS now provide a basis for generating new active-site libraries to evolve synthetases specific for other unnatural amino acids.  相似文献   

10.
Although having highly similar primary to tertiary structures, the different guanidino kinases exhibit distinct quaternary structures: monomer, dimer or octamer. However, no evidence for communication between subunits has yet been provided, and reasons for these different levels of quaternary complexity that can be observed from invertebrate to mammalian guanidino kinases remain elusive. Muscle creatine kinase is a dimer and disruption of the interface between subunits has been shown to give rise to destabilized monomers with slight residual activity; this low activity could, however, be due to a fraction of protein molecules present as dimer. CK monomer/monomer interface involves electrostatic interactions and increasing salt concentrations unfold and inactivate this enzyme. NaCl and guanidine hydrochloride show a synergistic unfolding effect and, whatever the respective concentrations of these compounds, inactivation is associated with a dissociation of the dimer. Using an interface mutant (W210Y), protein concentration dependence of the NaCl-induced unfolding profile indicates that the active dimer is in equilibrium with an inactive monomeric state. Although highly similar to muscle CK, horse shoe crab (Limulus polyphemus) arginine kinase (AK) is enzymatically active as a monomer. Indeed, high ionic strengths that can monomerize and inactivate CK, have no effect on AK enzymatic activity or on its structure as judged from intrinsic fluorescence data. Our results indicate that expression of muscle creatine kinase catalytic activity is dependent on its dimeric state which is required for a proper stabilization of the monomers.  相似文献   

11.
A naturally-occurring fragment of tyrosyl-tRNA synthetase (TyrRS) has been shown in higher eukaryotes to ‘moonlight’ as a pro-angiogenic cytokine in addition to its primary role in protein translation. Pro-angiogenic cytokines have previously been proposed to be promising therapeutic mechanisms for the treatment of myocardial infarction. Here, we show that systemic delivery of the natural fragment of TyRS, mini-TyrRS, improves heart function in mice after myocardial infarction. This improvement is associated with reduced formation of scar tissue, increased angiogenesis of cardiac capillaries, recruitment of c-kitpos cells and proliferation of myocardial fibroblasts. This work demonstrates that mini-TyrRS has beneficial effects on cardiac repair and regeneration and offers support for the notion that elucidation of the ever expanding repertoire of noncanonical functions of aminoacyl tRNA synthetases offers unique opportunities for development of novel therapeutics.  相似文献   

12.
The HIV viral entry co‐receptors CCR5 and CXCR4 function physiologically as typical chemokine receptors. Activation leads to cytosolic signal transduction that results in a variety of cellular responses such as cytoskeletal rearrangement and chemotaxis (CTX). Our aim was to investigate the signalling pathways involved in CC and CXC receptor‐mediated cell migration. Inhibition of dynamin I and II GTPase with dynasore completely inhibited CCL3‐stimulated CTX in THP‐1 cells, whereas the dynasore analogue Dyngo‐4a, which is a more potent inhibitor, showed reduced ability to inhibit CC chemokine‐induced CTX. In contrast, dynasore was not able to block cell migration via CXCR4. The same activation/inhibition pattern was verified in activated T lymphocytes for different CC and CXC chemokines. Cell migration induced by CC and CXC receptors does not rely on active internalization processes driven by dynamin because the blockade of internalization does not affect migration, but it might rely on dynamin interaction with the cytoskeleton. We identify here a functional difference in how CC and CXC receptor migration is controlled, suggesting that specific signalling networks are being employed for different receptor classes and potentially specific therapeutic targets to prevent receptor migration can be identified. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Bacterial tyrosyl-tRNA synthetases (TyrRS) possess a flexibly linked C-terminal domain of approximately 80 residues, which has hitherto been disordered in crystal structures of the enzyme. We have determined the structure of Thermus thermophilus TyrRS at 2.0 A resolution in a crystal form in which the C-terminal domain is ordered, and confirm that the fold is similar to part of the C-terminal domain of ribosomal protein S4. We have also determined the structure at 2.9 A resolution of the complex of T.thermophilus TyrRS with cognate tRNA(tyr)(G Psi A). In this structure, the C-terminal domain binds between the characteristic long variable arm of the tRNA and the anti-codon stem, thus recognizing the unique shape of the tRNA. The anticodon bases have a novel conformation with A-36 stacked on G-34, and both G-34 and Psi-35 are base-specifically recognized. The tRNA binds across the two subunits of the dimeric enzyme and, remarkably, the mode of recognition of the class I TyrRS for its cognate tRNA resembles that of a class II synthetase in being from the major groove side of the acceptor stem.  相似文献   

14.
Bacterial tyrosyl-tRNA synthetases occur in two large subfamilies, TyrRS and TyrRZ, that possess about 25% amino acid identity. Their amino-terminal region, the active site domain, is more conserved (>36% identity). The carboxy-terminal segment of these enzymes includes the tRNA binding domain and contains only few conserved residues. Replacement of three of these residues in Acidithiobacillus ferrooxidans TyrRZ revealed that S356 and K395 play roles in tRNA binding, while H306, a residue at the junction of the catalytic and tRNA binding domains, stabilizes the Tyr-AMP:TyrRZ complex. The replacement data suggest that conserved amino acids in A. ferrooxidans TyrRZ and Bacillus stearothermophilus TyrRS play equivalent roles in enzyme function.  相似文献   

15.
Trbp111 is a 111 amino acid Aquifex aeolicus structure-specific tRNA-binding protein that has homologous counterparts distributed throughout evolution. A dimer is the functional unit for binding a single tRNA. Here we report the 3D structures of the A.aeolicus protein and its Escherichia coli homolog at resolutions of 2.50 and 1.87 A, respectively. The structure shows a symmetrical dimer of two core domains and a central dimerization domain where the N- and C-terminal regions of Trbp111 form an extensive dimer interface. The core of the monomer is a classical oligonucleotide/oligosaccharide-binding (OB) fold with a five-stranded ss-barrel and a small capping helix. This structure is similar to that seen in the anticodon-binding domain of three class II tRNA synthetases and several other proteins. Mutational analysis identified sites important for interactions with tRNA. These residues line the inner surfaces of two clefts formed between the ss-barrel of each monomer and the dimer interface. The results are consistent with a proposed model for asymmetrical docking of the convex side of tRNA to the dimer.  相似文献   

16.
Protein phosphatase 2A (PP2A) is postulated to be involved in the dephosphorylation of G protein-coupled receptors. In the present study, we demonstrate that the carboxyl terminus of CXCR2 physically interacts with the PP2A core enzyme, a dimer formed by PP2Ac and PR65, but not with the PP2Ac monomer, suggesting direct interaction of the receptor with PR65. The integrity of a sequence motif in the C terminus of CXCR2, KFRHGL, which is conserved in all CC and CXC chemokine receptors, is required for the receptor binding to the PP2A core enzyme. CXCR2 co-immunoprecipitates with the PP2A core enzyme in HEK293 cells and in human neutrophils. Overexpression of dominant negative dynamin 1 (dynamin 1 K44A) in CXCR2-expressing cells blocks the receptor association with the PP2A core enzyme, and an internalization-deficient mutant form of CXCR2 (I323A,L324A) also exhibits impaired association with the PP2A core enzyme, suggesting that the receptor internalization is required for the receptor binding to PP2A. A phosphorylation-deficient mutant of CXCR2 (331T), which has previously been shown to undergo internalization in HEK293 cells, binds to an almost equal amount of the PP2A core enzyme in comparison with the wild-type CXCR2, suggesting that the interaction of the receptor with PP2A is phosphorylation-independent. The dephosphorylation of CXCR2 is reversed by treatment of the cells with okadaic acid. Moreover, pretreatment of the cells with okadaic acid increases basal phosphorylation of CXCR2 and attenuates CXCR2-mediated calcium mobilization and chemotaxis. Taken together, these data indicate that PP2A is involved in the dephosphorylation of CXCR2. We postulate that this interaction results from direct binding of the regulatory subunit A (PR65) of PP2A to the carboxyl terminus of CXCR2 after receptor sequestration and internalization.  相似文献   

17.
Each amino acid is attached to its cognate tRNA by a distinct aminoacyl-tRNA synthetase (aaRS). The conventional evolutionary view is that the modern complement of synthetases existed prior to the divergence of eubacteria and eukaryotes. Thus comparisons of prokaryotic and eukaryotic aminoacyl-tRNA synthetases of the same type (charging specificity) should show greater sequence similarities than comparisons between synthetases of different types—and this is almost always so. However, a recent study [Ribas de Pouplana L, Furgier M, Quinn CL, Schimmel P (1996) Proc Natl Acad Sci USA 93:166–170] suggested that tryptophanyl- (TrpRS) and tyrosyl-tRNA (TyrRS) synthetases of the Eucarya (eukaryotes) are more similar to each other than either is to counterparts in the Bacteria (eubacteria). Here, we reexamine the evolutionary relationships of TyrRS and TrpRS using a broader range of taxa, including new sequence data from the Archaea (archaebacteria) as well as species of Eucarya and Bacteria. Our results differ from those of Ribas de Pouplana et al.: All phylogenetic methods support the separate monophyly of TrpRS and TyrRS. We attribute this result to the inclusion of the archaeal data which might serve to reduce long branch effects possibly associated with eukaryotic TrpRS and TyrRS sequences. Furthermore, reciprocally rooted phylogenies of TrpRS and TyrRS sequences confirm the closer evolutionary relationship of Archaea to eukaryotes by placing the root of the universal tree in the Bacteria. Received: 7 December 1996 / Accepted: 11 February 1997  相似文献   

18.
Evolution of the tRNA(Tyr)/TyrRS aminoacylation systems   总被引:1,自引:0,他引:1  
The tRNA identity rules ensuring fidelity of translation are globally conserved throughout evolution except for tyrosyl-tRNA synthetases (TyrRSs) that display species-specific tRNA recognition. This discrimination originates from the presence of a conserved identity pair, G1-C72, located at the top of the acceptor stem of tRNA(Tyr) from eubacteria that is invariably replaced by an unusual C1-G72 pair in archaeal and eubacterial tRNA(Tyr). In addition to the key role of pair 1-72 in tyrosylation, discriminator base A73, the anticodon triplet and the large variable region (present in eubacterial tRNA(Tyr) but not found in eukaryal tRNA(Tyr)) contribute to tyrosylation with variable strengths. Crystallographic structures of two tRNA(Tyr)/TyrRS complexes revealed different interaction modes in accordance with the phylum-specificity. Recent functional studies on the human mitochondrial tRNA(Tyr)/TyrRS system indicates strong deviations from the canonical tyrosylation rules. These differences are discussed in the light of the present knowledge on TyrRSs.  相似文献   

19.
W H Ward  A R Fersht 《Biochemistry》1988,27(15):5525-5530
Tyrosyl-tRNA synthetase from Bacillus stearothermophilus is a classical example of an enzyme with half-of-the-sites activity. The enzyme crystallizes as a symmetrical dimer that is composed of identical subunits, each having a complete active site. In solution, however, tyrosyl-tRNA synthetase binds tightly, and activates rapidly, only 1 mol of Tyr/mol of dimer. It has recently been shown that the half-of-the-sites activity results from an inherent asymmetry of the enzyme. Only one subunit catalyzes formation of Tyr-AMP, and interchange of activity between subunits is not detectable over a long time scale. Paradoxically, however, the kinetics of tRNA charging are biphasic with respect to [Tyr], suggesting that both subunits of the dimer are catalytically active. This paradox has now been resolved by kinetic analysis of heterodimeric enzymes containing different mutations in each subunit. Biphasic kinetics with unchanged values of KM for Tyr are maintained when one of the two tRNA-binding domains is removed and also when the affinity of the "inactive" site for Try is reduced by 2-58-fold. The biphasic kinetics do not result from catalysis at both active sites, but instead appear to result from two molecules of Tyr binding sequentially to the same site. A second molecule of Tyr perhaps aids the dissociation of Tyr-tRNA by displacing the tyrosyl moiety from its binding site. A monomer of the enzyme is probably too small to allow both recognition and aminoacylation of a tRNA molecule. This could explain the requirement for the enzyme to function as an asymmetric dimer.  相似文献   

20.
Human tryptophanyl-tRNA synthetase (TrpRS) is secreted into the extracellular region of vascular endothelial cells. The splice variant form (mini TrpRS) functions in vascular endothelial cell apoptosis as an angiostatic cytokine. In contrast, the closely related human tyrosyl-tRNA synthetase (TyrRS) functions as an angiogenic cytokine in its truncated form (mini TyrRS). Here, we determined the crystal structure of human mini TrpRS at a resolution of 2.3 A and compared the structure with those of prokaryotic TrpRS and human mini TyrRS. Deletion of the tRNA anticodon-binding (TAB) domain insertion, consisting of eight residues in the human TrpRS, abolished the enzyme's apoptotic activity for endothelial cells, whereas its translational catalysis and cell-binding activities remained unchanged. Thus, we have identified the inserted peptide motif that activates the angiostatic signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号