首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tackling the epigenome in the pluripotent stem cells   总被引:2,自引:0,他引:2  
Embryonic stem cells are unique in their abilities of self-renewal and to differentiate into many, if not all, cellular lineages. Transcrip- tional regulation, epigenetic modifications and chromatin structures are the key modulators in controlling such pluripotency nature of embryonic stem cell genomes, particularly in the developmental decisions and the maintenance of cell fates. Among them, epigenetic regulation of gene expression is mediated partly by covalent modifications of core histone proteins including methylation, phosphoryla- tion and acetylation. Moreover, the chromatins in stem cell genome appear as a highly organized structure containing distinct functional domains. Recent rapid progress of new technologies enables us to take a global, unbiased and comprehensive view of the epigenetic modifications and chromatin structures that contribute to gene expression regulation and cell identity during diverse developmental stages. Here, we summarized the latest advances made by high throughput approaches in profiling epigenetic modifications and chromatin con- formations, with an emphasis on genome-wide analysis of histone modifications and their implications in pluripotency nature of embry- onic stem cells.  相似文献   

2.
3.
Epigenetic reprogramming in the germline provides a developmental model to study the erasure of epigenetic memory as it occurs naturally in vivo in the course of normal embryonic development. Our data show that germline reprogramming comprises both active DNA demethylation and extensive chromatin remodelling that are mechanistically linked through the activation of the base excision DNA repair pathway involved in the DNA demethylation process. The observed molecular hallmarks of the germline reprogramming exhibit intriguing similarities to other dedifferentiation or regeneration systems, pointing towards the existence of unifying molecular pathways underlying cell fate reversal. Elucidation of molecular processes involved in the resetting of epigenetic information in vivo will thus add to our ability to manipulate cell fate and to restore pluripotency in in vitro settings.  相似文献   

4.
5.
6.
张磊 《生命科学》2009,21(5):614-619
成体细胞可以通过核移植、细胞融合或者特定因子导入的方式实现重编程回到多能性状态。在重编程的过程中,表观遗传水平的调控机制起到了非常关键的作用。通过回顾重编程的研究进展来探讨表观遗传学在重编程中的调控机制。  相似文献   

7.
8.
9.
10.
    
To investigate the boundaries between regenerative and non-regenerative animals, we first survey regenerative ability across animal phyla from sponges to chordates (including mammals). There are both regenerative and non-regenerative animals in each phylum. The cells participating in regeneration also vary among different species. Thus, it is hard to find clear rules concerning regeneration ability across the animal kingdom, suggesting that it is not useful to compare the difference of regenerative ability across phyla to seek the boundary between regenerative and non-regenerative animals. Instead, if we carefully compare the differences of regenerative ability between closely related species within each phylum and accumulate these differences at the cellular molecular levels, we may be able to clarify the boundary between regenerative and non-regenerative animals. Here we introduce our comparative analysis of cellular events after amputation of lower jaws between frogs and newts. Then we propose that such comparative analyses using closely related species within the same phylum should be accumulated to understand the boundary between regenerative and non-regenerative animals in order to apply this understanding for realizing regenerative medicine in the future.  相似文献   

11.
    
Epithelial stem cells, such as those present in mammalian skin, intestine, or mammary gland, are tissue stem cells capable of both long‐term self‐renewal and multi‐lineage differentiation. Here we review studies implicating epigenetic control mechanisms in mammalian epithelial stem cell development and homeostasis. We also provide an update of recent progresses in the involvement of canonical Wnt signaling and note an interesting link between the Wnt pathway and chromatin regulation in epithelial stem cells. We anticipate that epigenetic and epigenomic studies of these cells will increase exponentially in the near future. J. Cell. Biochem. 106: 1279–1287, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
陈涛涛  ;康九红 《生命科学》2009,21(3):353-356
细胞重编程,尤其是诱导多能性干细胞的出现,给再生医学带来极大的希望。近年来,这方面的研究吸引了众多科学家的参与,也取得了非常丰富的成果。本文主要从转录因子、表观遗传和信号转导等角度,介绍了细胞重编程分子机制研究方面的进展和未来的方向。  相似文献   

13.
  总被引:1,自引:0,他引:1  
  相似文献   

14.
15.
《Epigenetics》2013,8(3):468-475
The Barcelona Conference on Epigenetics and Cancer (BCEC) entitled “Challenges, opportunities and perspectives” took place November 21–22, 2013 in Barcelona. The 2013 BCEC is the first edition of a series of annual conferences jointly organized by five leading research centers in Barcelona. These centers are the Institute of Predictive and Personalized Medicine of Cancer (IMPPC), the Biomedical Campus Bellvitge with its Program of Epigenetics and Cancer Biology (PEBC), the Centre for Genomic Regulation (CRG), the Institute for Biomedical Research (IRB), and the Molecular Biology Institute of Barcelona (IBMB). Manuel Perucho and Marcus Buschbeck from the Institute of Predictive and Personalized Medicine of Cancer put together the scientific program of the first conference broadly covering all aspects of epigenetic research ranging from fundamental molecular research to drug and biomarker development and clinical application. In one and a half days, 23 talks and 50 posters were presented to a completely booked out audience counting 270 participants.  相似文献   

16.
The Barcelona Conference on Epigenetics and Cancer (BCEC) entitled “Challenges, opportunities and perspectives” took place November 21–22, 2013 in Barcelona. The 2013 BCEC is the first edition of a series of annual conferences jointly organized by five leading research centers in Barcelona. These centers are the Institute of Predictive and Personalized Medicine of Cancer (IMPPC), the Biomedical Campus Bellvitge with its Program of Epigenetics and Cancer Biology (PEBC), the Centre for Genomic Regulation (CRG), the Institute for Biomedical Research (IRB), and the Molecular Biology Institute of Barcelona (IBMB). Manuel Perucho and Marcus Buschbeck from the Institute of Predictive and Personalized Medicine of Cancer put together the scientific program of the first conference broadly covering all aspects of epigenetic research ranging from fundamental molecular research to drug and biomarker development and clinical application. In one and a half days, 23 talks and 50 posters were presented to a completely booked out audience counting 270 participants.  相似文献   

17.
已分化的体细胞能够通过重编程转化回多能干细胞,在细胞移植、疾病细胞模型的制备以及药物筛选等领域具有重要意义。通过干细胞和体细胞的细胞融合,可使体细胞重编程。细胞融合致体细胞重编程速度快、效率高,是一种研究重编程机制的重要手段。对细胞融合致体细胞重编程的机制作一综述。  相似文献   

18.
习佳飞  岳文  裴雪涛 《生命科学》2009,21(3):357-362
细胞重编程是生命科学研究的热点之一,目前体细胞核移植、细胞融合和特定转录因子诱导等方法都可以实现体外细胞重编程,而在细胞重编程过程中表观遗传学发挥关键的调控作用,因此对重编程过程中表观遗传学调控机制开展深入研究具有重要的意义。本文简要综述细胞重编程的研究现状和表观遗传学调控细胞重编程机制的研究进展,并对小分子化合物和microRNA提高细胞重编程效率的最新进展进行了介绍。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号