首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein phosphatase 5 (Ppp5) is a serine/threonine protein phosphatase comprising a regulatory tetratricopeptide repeat (TPR) domain N-terminal to its phosphatase domain. Ppp5 functions in signalling pathways that control cellular responses to stress, glucocorticoids and DNA damage. Its phosphatase activity is suppressed by an autoinhibited conformation maintained by the TPR domain and a C-terminal subdomain. By interacting with the TPR domain, heat shock protein 90 (Hsp90) and fatty acids including arachidonic acid stimulate phosphatase activity. Here, we describe the structure of the autoinhibited state of Ppp5, revealing mechanisms of TPR-mediated phosphatase inhibition and Hsp90- and arachidonic acid-induced stimulation of phosphatase activity. The TPR domain engages with the catalytic channel of the phosphatase domain, restricting access to the catalytic site. This autoinhibited conformation of Ppp5 is stabilised by the C-terminal alphaJ helix that contacts a region of the Hsp90-binding groove on the TPR domain. Hsp90 activates Ppp5 by disrupting TPR-phosphatase domain interactions, permitting substrate access to the constitutively active phosphatase domain, whereas arachidonic acid prompts an alternate conformation of the TPR domain, destabilising the TPR-phosphatase domain interface.  相似文献   

2.
热激蛋白Hsp90是一类在进化中形成的高度保守的且可参与多种细胞功能的特异分子伴侣。TPR蛋白通常存在于Hsp90的多蛋白质复合物中,它对Hsp90的功能的多样性起着至关重要的作用,同时Hsp90可能为TPR蛋白提供“泊位”,允许不同的TPR蛋白在Hsp90分子伴侣底物附近有序而特异结合,从而使Hsp90在细胞内环境中以特定的方式完成其各种细胞功能。了解TPR蛋白与Hsp90的相互作用机制为阐明细胞内Hsp90的功能多样性和特异性奠定了基础。  相似文献   

3.
4.
The chaperone Hsp90 is required for the appropriate regulation of numerous key signaling molecules, including the progesterone receptor (PR). Many important cochaperones bind Hsp90 through their tetratricopeptide repeat (TPR) domains. Two such proteins, GCUNC45 and FKBP52, assist PR chaperoning and are thought to interact sequentially with PR-Hsp90 complexes. TPR proteins bind to the C-terminal MEEVD sequence of Hsp90, but GCUNC45 has been shown also to bind to a novel site near the N-terminus. We now show that FKBP52 is also able to bind to this site, and that these two cochaperones act competitively, through Hsp90, to modulate PR activity. The N-terminal site involves noncontiguous amino acids within or near the ATP binding pocket of Hsp90. TPR interactions at this site are thus strongly regulated by nucleotide binding and Hsp90 conformation. We propose an expanded model for client chaperoning in which the coordinated use of TPR recognition sites at both N- and C-terminal ends of Hsp90 enhances its ability to coordinate interactions with multiple TPR partners.  相似文献   

5.
Conformational dynamics of the molecular chaperone Hsp90   总被引:1,自引:0,他引:1  
The ubiquitous molecular chaperone Hsp90 makes up 1-2% of cytosolic proteins and is required for viability in eukaryotes. Hsp90 affects the folding and activation of a wide variety of substrate proteins including many involved in signaling and regulatory processes. Some of these substrates are implicated in cancer and other diseases, making Hsp90 an attractive drug target. Structural analyses have shown that Hsp90 is a highly dynamic and flexible molecule that can adopt a wide variety of structurally distinct states. One driving force for these rearrangements is the intrinsic ATPase activity of Hsp90, as seen with other chaperones. However, unlike other chaperones, studies have shown that the ATPase cycle of Hsp90 is not conformationally deterministic. That is, rather than dictating the conformational state, ATP binding and hydrolysis only shift the equilibria between a pre-existing set of conformational states. For bacterial, yeast and human Hsp90, there is a conserved three-state (apo-ATP-ADP) conformational cycle; however; the equilibria between states are species specific. In eukaryotes, cytosolic co-chaperones regulate the in vivo dynamic behavior of Hsp90 by shifting conformational equilibria and affecting the kinetics of structural changes and ATP hydrolysis. In this review, we discuss the structural and biochemical studies leading to our current understanding of the conformational dynamics of Hsp90, as well as the roles that nucleotide, co-chaperones, post-translational modification and substrates play. This view of Hsp90's conformational dynamics was enabled by the use of multiple complementary structural methods including, crystallography, small-angle X-ray scattering (SAXS), electron microscopy, F?rster resonance energy transfer (FRET) and NMR. Finally, we discuss the effects of Hsp90 inhibitors on conformation and the potential for developing small molecules that inhibit Hsp90 by disrupting the conformational dynamics.  相似文献   

6.
EGFL7 drives the formation of neurons from neural stem cells. In the embryonic and adult brain this process is essential for neurogenesis and homeostasis of the nervous system. The function of adult neurogenesis is not fully understood but maybe it supports life-long learning and brain repair after injuries such as stroke. The transition of neural stem cells into mature neurons is tightly regulated. One of the essential signaling pathways governing this process is the Notch pathway, which controls metazoan development. In a recent publication, we identified a novel non-canonical Notch ligand, EGFL7, and described its impact on neural stem cells.1 We explored the molecular mechanisms, which this molecule affects to regulate the self-renewal capacity of neural stem cells and to promote their differentiation into neurons. In this review, we discuss the implications of our findings for adult neurogenesis and illustrate the potential of EGFL7 to serve as an agent to increase neurogenesis and the self-renewal potential of the brain.  相似文献   

7.
Hsp40 and TPR1 are chaperone adaptors that regulate Hsp70-dependent folding processes by interacting with the amino terminal and carboxy terminal domains of Hsp70, respectively. In this study, we report cooperative interactions involving Hsp70, Hsp40, and TPR1 that enhance Hsp70-dependent folding of chemically denatured substrates. Hsp40 and Hsp70 dependent folding of chemically denatured luciferase was enhanced by up to 80% when TPR1 was also present. HspBp1, a negative modulator of Hsp70, completely inhibited Hsp70-dependent folding in the presence of Hsp40. However, when TPR1 was included in the reaction, the inhibitory effect of HspBp1 was reversed. To analyze the interactions, Kd analysis and competition assays were carried out. The Kds of the interactions of Hsp40, TRP1, and HspBp1 with Hsp70 were 0.5, 0.6, and 0.04 mM, respectively. Interestingly, the Hsp70/HspBp1 complex could only be dissociated in the presence of both Hsp40 and TPR1, suggesting cooperative interaction between Hsp70, Hsp40 and TPR1. To examine these interactions in vivo, we established a tetracycline-regulatable Hela cell line that expresses Hsp70 in the absence of doxycycline. Expression of HspBp1 inhibited Hsp70-dependent folding of heat-denatured luciferase, and this effect was only reversed in the presence of Hsp40 and TPR1. Our findings reveal a novel mechanism of positive regulation of Hsp70-dependent folding.  相似文献   

8.
Shao J  Hartson SD  Matts RL 《Biochemistry》2002,41(21):6770-6779
The maturation and activation of newly synthesized molecules of the heme-regulated inhibitor of protein synthesis (HRI) in reticulocytes require their functional interaction with Hsp90. In this report, we demonstrate that protein phosphatase 5 (PP5), a previously documented component of the Hsp90 chaperone machine, is physically associated with HRI maturation intermediates. The interaction of PP5 with HRI is mediated through Hsp90, as mutants of PP5 that do not bind Hsp90 do not interact with HRI. PP5 was also present in Hsp90 heterocomplexes with another Hsp90 cohort, p50(cdc37), and expression of newly synthesized HRI enhanced the amount of p50(cdc37) associated with Hsp90/PP5-HRI heterocomplexes. The functional significance of the interaction of PP5 with Hsp90-HRI heterocomplexes was examined by characterizing the effects of compounds that impact PP5 activity in vitro. The protein phosphatase inhibitors okadaic acid and nodularin enhanced the kinase activity of HRI when applied during HRI maturation/activation, while the PP5 activators arachidonic and linoleic acid repressed HRI activity when applied during HRI maturation/activation. However, application of these compounds after HRI's "transformation" to an Hsp90-independent form did not similarly impact HRI's kinase activity. Furthermore, the Hsp90 inhibitor geldanamycin negated the effects of phosphatase inhibitors on HRI maturation/activation. The finding that PP5 downregulates an Hsp90-dependent process supports models for regulated Hsp90 function and describes a novel potential substrate for PP5 function in vivo.  相似文献   

9.
Hsp90 is an essential molecular chaperone in the eukaryotic cytosol. Its function is modulated by cochaperones and posttranslational modifications. Importantly, the phosphatase Ppt1 is a dedicated regulator of the Hsp90 chaperone system. Little is known about Ppt1-dependent phosphorylation sites and how these affect Hsp90 activity. Here, we identified the major phosphorylation sites of yeast Hsp90 in its middle or the C-terminal domain and determined the subset regulated by Ppt1. In general, phosphorylation decelerates the Hsp90 machinery, reduces chaperone function in vivo, sensitizes yeast cells to Hsp90 inhibition and affects DNA repair processes. Modification of one particular site (S485) is lethal, whereas others modulate Hsp90 activity via distinct mechanisms affecting the ATPase activity, cochaperone binding and manipulating conformational transitions in Hsp90. Our mechanistic analysis reveals that phosphorylation of Hsp90 permits a regulation of the conformational cycle at distinct steps by targeting switch points for the communication of remote regions within Hsp90.  相似文献   

10.
Hsp90 is an abundant and ubiquitous protein involved in a diverse array of cellular processes. Mechanistically we understand little of the apparently complex interactions of this molecular chaperone. Recently, progress has been made in assigning some of the known functions of hsp90, such as nucleotide binding and peptide binding, to particular domains within the protein. We used fragments of hsp90 and chimeric proteins containing functional domains from hsp90 or its mitochondrial homolog, TRAP1, to study the requirements for this protein in the folding of firefly luciferase as well as in the prevention of citrate synthase aggregation. In agreement with others who have found peptide binding and limited chaperone ability in fragments of hsp90, we see that multiple fragments from hsp90 can prevent the aggregation of thermally denatured citrate synthase, a measure of passive chaperoning activity. However, in contrast to these results, the luciferase folding assay was found to be much more demanding. Here, folding is mediated by hsp70 and hsp40, requires ATP, and thus is a measure of active chaperoning. Hsp90 and the co-chaperone, Hop, enhance this process. This hsp90 activity was only observed using full-length hsp90 indicating that the cooperation of multiple functional domains is essential for active, chaperone-mediated folding.  相似文献   

11.
Protein-protein interaction modules containing so-called tetratricopeptide repeats (TPRs) mediate the assembly of Hsp70/Hsp90 multi-chaperone complexes. The TPR1 and TPR2A domains of the Hsp70/Hsp90 adapter protein p60/Hop specifically bind to short peptides corresponding to the C-terminal tails of Hsp70 and Hsp90, respectively, both of which contain the highly conserved sequence motif EEVD-COOH. Here, we quantitatively assessed the contribution of TPR-mediated peptide recognition to Hsp70.Hop.Hsp90 complex formation. The interaction of TPR2A with the C-terminal pentapeptide of Hsp90 (MEEVD) is identified as the core contact for Hop binding to Hsp90. (In peptide sequences, italics are used to highlight residues specific for Hsp70 or Hsp90.) In contrast, formation of the Hsp70.Hop complex depends not only on recognition of the C-terminal Hsp70 heptapeptide (PTIEEVD) by TPR1 but also on additional contacts between Hsp70 and Hop. The sequence motifs for TPR1 and TPR2A binding were defined by alanine scanning of the C-terminal octapeptides of Hsp70 and Hsp90 and by screening of combinatorial peptide libraries. Asp0 and Val-1 of the EEVD motif are identified as general anchor residues, but the highly conserved glutamates of the EEVD sequence, which are critical in Hsp90 binding by TPR2A, do not contribute appreciably to the interaction of Hsp70 with TPR1. Rather, TPR1 prefers hydrophobic amino acids in these positions. Moreover, the TPR domains display a pronounced tendency to interact preferentially with hydrophobic aliphatic and aromatic side chains in positions -4 and -6 of their respective peptide ligands. Ile-4 in Hsp70 and Met-4 in Hsp90 are most important in determining the specific binding of TPR1 and TPR2A, respectively.  相似文献   

12.
目的:研究Ppp5c及TTC16基因的TPR(tetratricopeptide repeat)结构域短片段和Hsp70及Hsp90家族蛋白的相互做用,及其过表达对细胞周期的影响。方法:通过生物信息学的分析及PCR的方法,克隆Ppp5c及TTC16基因的TPR结构域以及HSPA1A、HSP90AA1的全长基因,并连入酵母双杂交载体,通过ClonTech的酵母双杂交实验体系研究蛋白和蛋白之间的相互作用。把Ppp5c及TTC16基因的TPR结构域克隆入真核表达载体,构架稳定表达Ppp5c及TTC16基因的TPR结构域的MCF-7细胞系,并通过流式细胞实验观察细胞周期。结果:Ppp5c及TTC16基因的TPR结构域能与HSPA1A或HSP90AA1发生相互作用。Ppp5c及TTC16基因的TPR结构域在MCF-7中的过表达能严重影响细胞周期,引起细胞凋亡和S期阻滞。结论:本实验初步揭示了不同蛋白的TPR结构域在与Hsp70及Hsp90蛋白的相互作用性质的异同点以及其过表达对细胞周期的影响,为全面理解TPR结构域的功能、Ppp5c以及TTC16蛋白在细胞内的功能奠定了前期实验基础。  相似文献   

13.
Atopic dermatitis (AD) is one of the most common chronic inflammatory dermatoses characterized by persistent itching and recurrent eczematous lesions. While the primary events and key drivers of AD are topics of ongoing debate, cutaneous inflammation due to inappropriate IgE (auto)antibody–related immune reactions is frequently considered. Highly conserved and immunogenic heat shock protein 90 (Hsp90), a key intra- and extracellular chaperone, can activate the immune response driving the generation of circulating anti-Hsp90 autoantibodies that are found to be elevated in several autoimmune disorders. Here, for the first time, we observed that serum levels of Hsp90 and anti-Hsp90 IgE autoantibodies are significantly elevated (p < 0.0001) in AD patients (n = 29) when compared to age- and gender-matched healthy controls (n = 70). We revealed a positive correlation (0.378, p = 0.042) between serum levels of Hsp90 and the severity of AD assessed by Scoring Atopic Dermatitis (SCORAD). In addition, seropositivity for anti-Hsp90 IgE has been found in 48.27% of AD patients and in 2.85% of healthy controls. Although further studies on a larger group of patients are needed to confirm presented data, our results suggest that extracellular Hsp90 and autoantibodies to Hsp90 deserve attention in the study of the mechanisms that promote the development and/or maintenance of atopic dermatitis.  相似文献   

14.
The molecular chaperone Hsp90 is essential for the correct folding, maturation and activation of a diverse array of client proteins, including several key constituents of oncogenic processes. Hsp90 has become a focus of cancer research, since it represents a target for direct prophylaxis against multistep malignancy. Hydrogen-exchange mass spectrometry was used to study the structural and conformational changes undergone by full-length human Hsp90beta in solution upon binding of the kinase-specific co-chaperone Cdc37 and two Hsp90 ATPase inhibitors: Radicicol and the first-generation anticancer drug DMAG. Changes in hydrogen exchange pattern in the complexes in regions of Hsp90 remote to the ligand-binding site were observed indicating long-range effects. In particular, the interface between the N-terminal domain and middle domains exhibited significant differences between the apo and complexed forms. For the inhibitors, differences in the interface between the middle domain and the C-terminal domain were also observed. These data provide important insight into the structure of the biologically active form of the protein.  相似文献   

15.
Crevel G  Bennett D  Cotterill S 《PloS one》2008,3(3):e0001737

Background

The human TTC4 protein is a TPR (tetratricopeptide repeat) motif-containing protein. The gene was originally identified as being localized in a genomic region linked to breast cancer and subsequent studies on melanoma cell lines revealed point mutations in the TTC4 protein that may be associated with the progression of malignant melanoma.

Methodology/Principle Findings

Here we show that TTC4 is a nucleoplasmic protein which interacts with HSP90 and HSP70, and also with the replication protein CDC6. It has significant structural and functional similarities with a previously characterised Drosophila protein Dpit47. We show that TTC4 protein levels are raised in malignant melanoma cell lines compared to melanocytes. We also see increased TTC4 expression in a variety of tumour lines derived from other tissues. In addition we show that TTC4 proteins bearing some of the mutations previously identified from patient samples lose their interaction with the CDC6 protein.

Conclusions/Significance

Based on these results and our previous work with the Drosophila Dpit47 protein we suggest that TTC4 is an HSP90 co-chaperone protein which forms a link between HSP90 chaperone activity and DNA replication. We further suggest that the loss of the interaction with CDC6 or with additional client proteins could provide one route through which TTC4 could influence malignant development of cells.  相似文献   

16.
The protein tyrosine kinase (PTK) Csk is a potent negative regulator of several signal transduction processes, as a consequence of its exquisite ability to inactivate Src-related PTKs. This function requires not only the kinase domain of Csk, but also its Src homology 3 (SH3) and SH2 regions. We showed previously that the Csk SH3 domain mediates highly specific associations with two members of the PEP family of nonreceptor protein tyrosine phosphatases (PTPs), PEP and PTP-PEST. In comparison, the Csk SH2 domain interacts with several tyrosine phosphorylated molecules, presumed to allow targetting of Csk to sites of Src family kinase activation. Herein, we attempted to understand better the regulation of Csk by identifying ligands for its SH2 domain. Using a modified yeast two-hybrid screen, we uncovered the fact that Csk associates with PTP-HSCF, the third member of the PEP family of PTPs. This association was documented not only in yeast cells but also in a heterologous mammalian cell system and in cytokine-dependent hemopoietic cells. Surprisingly, the Csk-PTP-HSCF interaction was found to be mediated by the Csk SH2 domain and two putative sites of tyrosine phosphorylation in the noncatalytic portion of PTP-HSCF. Transfection experiments indicated that Csk and PTP-HSCF synergized to inhibit signal transduction by Src family kinases and that this cooperativity was dependent on the domains mediating their association. Finally, we obtained evidence that PTP-HSCF inactivated Src-related PTKs by selectively dephosphorylating the positive regulatory tyrosine in their kinase domain. Taken together, these results demonstrate that part of the function of the Csk SH2 domain is to mediate an inducible association with a PTP, thereby engineering a more efficient inhibitory mechanism for Src-related PTKs. Coupled with previously published observations, these data also establish that Csk forms complexes with all three known members of the PEP family.  相似文献   

17.
R Aligue  H Akhavan-Niak    P Russell 《The EMBO journal》1994,13(24):6099-6106
Wee1 protein kinase regulates the length of G2 phase by carrying out the inhibitory tyrosyl phosphorylation of Cdc2-cyclin B kinase. Mutations were isolated that suppressed the G2 cell cycle arrest caused by overproduction of Wee1. One class of swo (suppressor of wee1 overproduction) mutation, exemplified by swo1-26, also caused a temperature sensitive lethal phenotype in a wee1+ background. The swo1+ gene encodes a member of the Hsp90 family of stress proteins. Swo1 is essential for viability at all temperatures. Swo1 coimmunoprecipitates with Wee1, showing that the two proteins interact. The swo1-26 mutant undergoes premature mitosis when grown at a semi-permissive temperature. These data strongly indicate that formation of active Wee1 tyrosine kinase requires interaction with Swo1, perhaps in a manner analogous to the previously demonstrated interaction between Hsp90 and v-src tyrosine kinase. These observations demonstrate a unexpected role for Hsp90 in cell cycle control.  相似文献   

18.
The heat shock protein Hsp90 plays a key, but poorly understood role in the folding, assembly and activation of a large number of signal transduction molecules, in particular kinases and steroid hormone receptors. In carrying out these functions Hsp90 hydrolyses ATP as it cycles between ADP- and ATP-bound forms, and this ATPase activity is regulated by the transient association with a variety of co-chaperones. Cdc37 is one such co-chaperone protein that also has a role in client protein recognition, in that it is required for Hsp90-dependent folding and activation of a particular group of protein kinases. These include the cyclin-dependent kinases (Cdk) 4/6 and Cdk9, Raf-1, Akt and many others. Here, the biochemical details of the interaction of human Hsp90 beta and Cdc37 have been characterised. Small angle X-ray scattering (SAXS) was then used to study the solution structure of Hsp90 and its complexes with Cdc37. The results suggest a model for the interaction of Cdc37 with Hsp90, whereby a Cdc37 dimer binds the two N-terminal domain/linker regions in an Hsp90 dimer, fixing them in a single conformation that is presumably suitable for client protein recognition.  相似文献   

19.
The in vivo function of the heat shock protein 90 (Hsp90) molecular chaperone is dependent on the binding and hydrolysis of ATP, and on interactions with a variety of co-chaperones containing tetratricopeptide repeat (TPR) domains. We have now analysed the interaction of the yeast TPR-domain co-chaperones Sti1 and Cpr6 with yeast Hsp90 by isothermal titration calorimetry, circular dichroism spectroscopy and analytical ultracentrifugation, and determined the effect of their binding on the inherent ATPase activity of Hsp90. Sti1 and Cpr6 both bind with sub-micromolar affinity, with Sti1 binding accompanied by a large conformational change. Two co-chaperone molecules bind per Hsp90 dimer, and Sti1 itself is found to be a dimer in free solution. The inherent ATPase activity of Hsp90 is completely inhibited by binding of Sti1, but is not affected by Cpr6, although Cpr6 can reactivate the ATPase activity by displacing Sti1 from Hsp90. Bound Sti1 makes direct contact with, and blocks access to the ATP-binding site in the N-terminal domain of Hsp90. These results reveal an important role for TPR-domain co-chaperones as regulators of the ATPase activity of Hsp90, showing that the ATP-dependent step in Hsp90-mediated protein folding occurs after the binding of the folding client protein, and suggesting that ATP hydrolysis triggers client-protein release.  相似文献   

20.
In the eukaryotic cytosol, Hsp70 and Hsp90 cooperate with various co-chaperone proteins in the folding of a growing set of substrates, including the glucocorticoid receptor (GR). Here, we analyse the function of the co-chaperone Tpr2, which contains two chaperone-binding TPR domains and a DnaJ homologous J domain. In vivo, an increase or decrease in Tpr2 expression reduces GR activation, suggesting that Tpr2 is required at a narrowly defined expression level. As shown in vitro, Tpr2 recognizes both Hsp70 and Hsp90 through its TPR domains, and its J domain stimulates ATP hydrolysis and polypeptide binding by Hsp70. Furthermore, unlike other co-chaperones, Tpr2 induces ATP-independent dissociation of Hsp90 but not of Hsp70 from chaperone-substrate complexes. Excess Tpr2 inhibits the Hsp90-dependent folding of GR in cell lysates. We propose a novel mechanism in which Tpr2 mediates the retrograde transfer of substrates from Hsp90 onto Hsp70. At normal levels substoichiometric to Hsp90 and Hsp70, this activity optimizes the function of the multichaperone machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号