首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms by which plants respond to reduced water availability (low water potential) include both ABA-dependent and ABA-independent processes. Pro accumulation and osmotic adjustment are two important traits for which the mechanisms of regulation by low water potential, and the involvement of ABA, is not well understood. The ABA-deficient mutant, aba2-1, was used to investigate the regulatory role of ABA in low water potential-induced Pro accumulation and osmotic adjustment in seedlings of Arabidopsis thaliana. Low water potential-induced Pro accumulation required wild-type levels of ABA, as well as a change in ABA sensitivity or ABA-independent events. Osmotic adjustment, in contrast, occurred independently of ABA accumulation in aba2-1. Quantification of low water potential-induced ABA and Pro accumulation in five ABA-insensitive mutants, abi1-1, abi2-1, abi3, abi4, and abi5, revealed that abi4 had increased Pro accumulation at low water potential, but a reduced response to exogenous ABA. Both of these responses were modified by sucrose treatment, indicating that ABI4 has a role in connecting ABA and sugar in regulating Pro accumulation. Of the other abi mutants, only abi1 had reduced Pro accumulation in response to low water potential and ABA application. It was also observed that abi1-1 and abi2-1 had increased ABA accumulation. The involvement of these loci in feedback regulation of ABA accumulation may occur through an effect on ABA catabolism or conjugation. These data provide new information on the function of ABA in seedlings exposed to low water potential and define new roles for three of the well-studied abi loci.  相似文献   

2.
Cytokinin signaling has complex effects on abiotic stress responses that remain to be fully elucidated. The Arabidopsis histidine kinases (AHKs), AHK2, AHK3 and CRE1 (cytokinin response1/AHK4) are the principle cytokinin receptors of Arabidopsis. Using a set of ahk mutants, we found dramatic differences in response to low water potential and salt stress among the AHKs. ahk3‐3 mutants had increased root elongation after transfer to low water potential media. Conversely ahk2‐2 was hypersensitive to salt stress in terms of root growth and fresh weight and accumulated higher than wild‐type levels of proline specifically under salt stress. Strongly reduced proline accumulation in ahk double mutants after low water potential treatment indicated a more general role of cytokinin signaling in proline metabolism. Reduced P5CS11‐pyrroline‐5‐carboxylate synthetase1) gene expression may have contributed to this reduced proline accumulation. Low water potential phenotypes of ahk mutants were not caused by altered abscisic acid (ABA) accumulation as all ahk mutants had wild‐type ABA levels, despite the observation that ahk double mutants had reduced NCED3 (9‐cis‐epoxycartenoid dioxygenase3) expression when exposed to low water potential. No difference in osmoregulatory solute accumulation was detected in any of the ahk mutants indicating that they do not affect drought responsive osmotic adjustment. Overall, our examination of ahk mutants found specific phenotypes associated with AHK2 and AHK3 as well as a general function of cytokinin signaling in proline accumulation and low water potential induction of P5CS1 and NCED3 expression. These results show the stress physiology function of AHKs at a new level of detail.  相似文献   

3.
R. F. Meyer  J. S. Boyer 《Planta》1981,151(5):482-489
Soybean (Glycine max (L.) Merr.) seedlings osmoregulate when the supply of water is limited around the roots. The osmoregulation involves solute accumulation (osmotic adjustment) by the elongating region of the hypocotyls. We investigated the relationship between growth, solute accumulation, and the partitioning of solutes during osmoregulation. Darkgrown seedlings were transplanted to vermiculite containing 1/8 (0.13 x) the water of the controls. Within 12–15 h, the osmotic potential of the elongating region had decreased to-12 bar, but it was-7 bar in the controls. This osmoregulation involved a true solute accumulation by the hypocotyls, since cell volume and turgor were virtually the same regardless of the water regime. The hypocotyls having low water potentials elongated slowly but, when deprived of their cotyledons, did not elongate or accumulate solute. This result indicated a cotyledonary origin for the solutes and a dependence of slow growth on osmotic adjustment. The translocation of nonrespired dry matter from the cotyledons to the seedling axis was unaffected by the availability of water, but partitioning was altered. In the first 12 h, dry matter accumulated in the elongating region of the 0.13 x hypocotyls, and osmotic adjustment occurred. The solutes involved were mostly free amino acids, glucose, fructose, and sucrose, and these accounted for most of the increased dry weight. After osmotic adjustment was complete, dry matter ceased to accumulate in the hypocotyls and bypassed them to accumulate in the roots, which grew faster than the control roots. The proliferation of the roots resulted in an increased root/shoot ratio, a common response of plants to dry conditions.Osmotic adjustment occurred in the elongating region of the hypocotyls because solute utilization for growth decreased while solute uptake continued. Adjustment was completed when solute uptake subsequently decreased, and uptake then balanced utilization. The control of osmotic adjustment was therefore the rate of solute utilization and, secondarily, the rate of solute uptake. Elongation was inhibited by unknown factors(s) despite the turgor and substrates associated with osmotic adjustment. The remaining slow elongation depended on osmotic adjustment and represented some optimum between the necessary inhibition for solute accumulation and the necessary growth for seedling establishment.  相似文献   

4.
盐分和水分胁迫对芦荟幼苗渗透调节和渗调物质积累的影响   总被引:31,自引:0,他引:31  
用不同浓度NaCl和等渗聚乙二醇(PEG 6000)处理芦荟(Aloe vera L.)幼苗,10 d后测定叶片相对生长速率和厚度、叶片中主要有机溶质、无机离子含量及渗透调节能力.结果表明,-0.44、-0.88 MPa NaCl和PEG处理使芦荟叶片的相对生长速率和叶片厚度明显下降,且盐胁迫对幼苗生长的抑制和叶片含水量降低的效应明显高于等渗的水分胁迫,其叶片渗透调节能力随处理渗透势的降低而增加, -0.88 MPa PEG胁迫的芦荟幼苗的渗透调节能力高于等渗盐分胁迫.在主要渗透调节物质可溶性糖、有机酸、K 、Ca2 和Cl-中,-0.88 MPa PEG处理下含量比相同渗透势的NaCl处理下显著增加的是有机溶质,因此推断有机溶质含量高是PEG胁迫下渗透调节能力较强的主要因素.  相似文献   

5.
Sharp RE  Hsiao TC  Silk WK 《Plant physiology》1990,93(4):1337-1346
Primary roots of maize (Zea mays L. cv WF9 × Mo17) seedlings growing in vermiculite at various water potentials exhibited substantial osmotic adjustment in the growing region. We have assessed quantitatively whether the osmotic adjustment was attributable to increased net solute deposition rates or to slower rates of water deposition associated with reduced volume expansion. Spatial distributions of total osmotica, soluble carbohydrates, potassium, and water were combined with published growth velocity distributions to calculate deposition rate profiles using the continuity equation. Low water potentials had no effect on the rate of total osmoticum deposition per unit length close to the apex, and caused decreased deposition rates in basal regions. However, rates of water deposition decreased more than osmoticum deposition. Consequently, osmoticum deposition rates per unit water volume were increased near the apex and osmotic potentials were lower throughout the growing region. Because the stressed roots were thinner, osmotic adjustment occurred without osmoticum accumulation per unit length. The effects of low water potential on hexose deposition were similar to those for total osmotica, and hexose made a major contribution to the osmotic adjustment in middle and basal regions. In contrast, potassium deposition decreased at low water potentials in close parallel with water deposition, and increases in potassium concentration were small. The results show that growth of the maize primary root at low water potentials involves a complex pattern of morphogenic and metabolic events. Although osmotic adjustment is largely the result of a greater inhibition of volume expansion and water deposition than solute deposition, the contrasting behavior of hexose and potassium deposition indicates that the adjustment is a highly regulated process.  相似文献   

6.
This study investigated the accumulation of osmotic solutes in citrus (Poncirus trifoliata) seedlings colonized by Glomus versiforme subjected to drought stress or kept well watered. Development of mycorrhizae was higher under well watered than under drought-stressed conditions. Arbuscular mycorrhizal (AM) seedlings accumulated more soluble sugars, soluble starch and total non-structural carbohydrates in leaves and roots than corresponding non-AM seedlings regardless of soil-water status. Glucose and sucrose contents of well-watered and drought-stressed roots, fructose contents of well-watered roots and sucrose contents of drought-stressed leaves were notably higher in AM than in non-AM seedlings. K+ and Ca2+ levels in AM leaves and roots were greater than those in non-AM leaves and roots, while AM symbiosis did not affect the Mg2+ level. AM seedlings accumulated less proline than non-AM seedlings. AM symbiosis altered both the allocation of carbohydrate to roots and the net osmotic solute accumulations in response to drought stress. It is concluded that AM colonization enhances osmotic solute accumulation of trifoliate orange seedlings, thus providing better osmotic adjustment in AM seedlings, which did not correlate with proline but with K+, Ca2+, Mg2+, glucose, fructose and sucrose accumulation.  相似文献   

7.
Genetic variation in the drought response of leaf and root tissue water relations of seedlings of eight sources of black walnut ( Juglans nigra L.) was investigated using the pressure-volume technique. Tissue water relations were characterized at three stages of a drying cycle during which well-watered plants were allowed to desiccate and then were reirrigated.
Sources varied both in the capacity for and degree of leaf and root osmotic adjustment, and in the mechanism by which it was achieved. A decrease in osmotic potential at the turgor loss point (ψπp) of 0.4 MPa was attributable to increased leaf tissue elasticity in seedlings of four sources, while seedlings of an Ontario source exhibited a 0.7–0.8 MPa decline in ψπp as a result of both increased solute content and increased leaf tissue elasticity. Seedlings of a New York source showed no detectable osmotic adjustment.
In roots, decreased ψπp (osmotic potential at full hydration) and ψπp were observed under drought. Sources that exhibited significant leaf osmotic adjustment also generally showed a similar response in roots. Tissue elasticity and ψπp of roots were higher than those of shoots, whereas ψπp of the two organs was similar for most sources. Because of greater elasticity, roots exhibited a more gradual decline in turgor and total water potential than did leaves as tissue relative water content decreased.  相似文献   

8.
Soybean seedlings (Glycine max L.) were germinated and dark-grown in water-saturated vermiculite (water potential = −0.01 megapascal) for 48 hours, then transferred either to water-saturated vermiculite or to low water potential vermiculite (water potential = −0.30 megapascal). A decrease in growth rate was detectable within 0.8 hour post-transfer to low water potential vermiculite. A fourfold increase in the abscisic acid content of the elongating region was observed within 0.5 hour. At 24 hours post-transfer, hypocotyl elongation was severely arrested and abscisic acid reached its highest measured level: 3.7 nanograms per milligram dry weight (74-fold increase). A comparison of the polyA+ RNA populations isolated at 24 hours post-transfer from the elongating region of water-saturated and low water potential vermiculite-grown seedlings was made by two-dimensional (isoelectric focusing-sodium dodecyl sulfate) polyacrylamide gel analysis of in vitro translation products. It revealed both increases and decreases in the relative amounts of a number of translation products. Rewatering seedlings grown in low water potential vermiculite at 24 hours post-transfer led to a total recovery in growth rate within 0.5 hour, while abscisic acid in the elongating hypocotyl region required 1 to 2 hours to return to uninduced levels. Application of 1.0 millimolar (±) abscisic acid to well-watered seedlings resulted in a 48% reduction in hypocotyl growth rate during the first 2 hours after treatment. Plants treated with abscisic acid for 24 hours had a lower polysome content than control plants. However, hypocotyl growth inhibition in abscisic acid-treated seedlings preceded the decline in polysome content.  相似文献   

9.
Germinated soybean (Glycine max L. cv Williams 82) seedlings subjected to rapid dehydration begin to lose the ability to recover when the relative water content of the plant decreases below 60%. The expanded cells of the hypocotyl appear more susceptible to dehydration-induced damage than do cells in the hypocotyl zone of cell growth. Pretreatment of seedlings prior to rapid dehydration with nonlethal water deficit or exogenous abscisic acid (ABA) shifts this viability threshold to progressively lower relative water contents, indicating the acquisition of increased dehydration tolerance. Increased tolerance is associated with osmotic adjustment in the hypocotyl zone of cell growth and with increases in soybean dehydrin Mat1 mRNA levels. The accumulation of Mat1 mRNA is dehydration dependent but insensitive to ABA. Induction of Mat1 mRNA accumulation by dehydration but not by ABA makes it an unusual member of the dehydrin family.  相似文献   

10.
Maize (Zea mays) and wheat (Triticum aestivum) were water stressed for 4 days at early vegetative growth (15-day-old) using PEG-6000 (−1.0 MPa), in the presence of 1 mM CaSO4, 50 μM Verapamil (VP; calcium channel blocker); 50 μM Trifluoperazine (TFP; calmodulin antagonist) and then put to recovery in order to investigate the changes in osmoregulation in plants having C3 and C4 metabolism. Accumulation of proline (Pro) and quaternary ammonium compounds (QAC's), activities of pyrroline-5-carboxylate reductase (P5CR), proline dehydrogenase (PDH), water potential (Ψw), osmotic adjustment (OA), relative elongation rate (RER) and electrolyte leakage (EL) were examined during stress and recovery. Maize had significantly higher accumulation of Pro while wheat showed relatively more accumulation of QAC's. The activities of P5CR and PO were also significantly higher in maize than wheat. Maize shoots under stress showed higher Ψw, OA, RER and less EL than wheat shoots. Upon recovery from stress, maize regained its growth and water potential faster than wheat. Ca2+ elevated the accumulation of osmolytes in both the plants but OA was less sensitive to it. In the presence of Ca2+, wheat showed significantly more accumulation of osmolytes, higher Ψw, RER than maize. Ca2+ inhibitors partially reversed the effects of calcium indicating its involvement in governing solute accumulation. The differential sensitivity of maize and wheat towards water stress may be related to variation in endogenous calcium expression and its function.  相似文献   

11.
The study of mutants impaired in the sensitivity or synthesis of abscisic acid (ABA) has become a powerful tool to analyse the interactions occurring between the ABA and ethylene signalling pathways, with potential to change the traditional view of the role of ABA as just being involved in growth inhibition. The tss2 tomato mutant, which is hypersensitive to NaCl and osmotic stress, shows enhanced growth inhibition in the presence of exogenous ABA. The tos1 tomato mutant is also hypersensitive to osmotic stress, but in contrast to tss2, shows decreased sensitivity to ABA. Surprisingly, blocking ethylene signalling suppresses the growth defect of tss2 seedlings on ABA, NaCl, and osmotic stress, but not the osmotic hypersensitivity of tos1. The ethylene production of tss2 seedlings is increased compared with that of control seedlings under osmotic stress. In addition, the tss2 plants are hypersensitive to root growth inhibition by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). This suggests that, in addition to ABA regulation, TSS2 acts as a negative regulator of endogenous ethylene accumulation. As previously shown in Arabidopsis, it is shown here that extensive cross-talk occurs between the ABA and ethylene signalling pathways in tomato and that the TSS2 and TOS1 loci appear as regulators of this cross-talk.  相似文献   

12.
以黄土高原4个乡土树种的幼苗为试验材料,采用盆栽方式模拟土壤干旱环境,研究土壤干旱对不同树种水分代谢与渗透调节物质的影响。结果表明,大叶细裂槭、虎榛子叶水势、叶片含水量下降迅速,叶片离体保水能力降幅明显;白刺花、辽东栎则表现为叶水势、叶片含水量缓慢下降,组织相对含水量在中度胁迫下略有上升。白刺花在不同水分处理条件下离体叶片保水力明显高于其它树种。1个树种可溶性糖含量随土壤干旱程度加剧明显增加,可溶性蛋白质含量在树种之间变化较为复杂,无明显规律性。K^ 离子含量和游离脯氨酸含量在中度水分胁迫下均有不同程度升高。白刺花在土壤干旱进程中,可溶性蛋白质含量、K^ 离子含量和游离脯氨酸含量均明显高于其它树种。综合水分代谢和渗透调节物质来看,水分胁迫条件下,白刺花以保持高水势、减少组织水分散失和增加渗透调节物质来提高细胞原生质浓度,增强其抗旱性。  相似文献   

13.
R. F. Meyer  J. S. Boyer 《Planta》1972,108(1):77-87
Summary The response of cell division and cell elongation to low cell water potentials was studied in etiolated, intact soybean hypocotyls desiccated either by withholding water from seedlings or by subjecting hypocotyls to pressure. Measurements of hypocotyl water potential and osmotic potential indicated that desiccation by withholding water resulted in osmotic adjustment of the hypocotyls so that turgor remained almost constant. The adjustment appeared to involve transport of solutes from the cotyledons to the hypocotyl and permitted growth of the seedlings at water potentials which would have been strongly inhibitory had adjustment not occurred. Growth was ultimately inhibited in hypocotyls due to inhibition of cell division and cell elongation to a similar degree. The inhibition of cell elongation appeared to result from a change in the minimum turgor necessary for growth. On the other hand, when intact hypocotyls were exposed to pressure for 3 h, osmotic adjustment did not occur, turgor decreased, and the sensitivity of growth to low cell water potentials increased, presumably due to inhibition of cell elongation. Thus, although cell division was sensitive to low cell water potentials in soybean hypocotyls, cell elongation had either the same sensitivity or was more sensitive, depending on whether the tissue adjusted osmotically. Osmotic adjustment of hypocotyls may represent a mechanism for preserving growth in seedlings germinating in desiccated soil.Supported by a grant from the Illinois Agricultural Experiment Station, University of Illinois and grant 1-T1-GM-1380 from the United States Public Health Service.  相似文献   

14.
Nitric oxide (NO) and reactive oxygen species (ROS) play important roles in both abscisic acid (ABA) signaling and stress-induced ABA accumulation. However, little is known about their physiological roles in the whole plant. In this study, the effects of NO and ROS on leaf water control and the roles of ABA were determined using wheat (Triticum aestivum L.) seedlings. As compared with the control, osmotic stress reduced leaf water loss (LWL) while it increased leaf ABA content. The effects of osmotic stress on LWL and ABA contents were partially reversed by NO scavengers or NO synthase (NOS) inhibitors. Furthermore, sodium nitroprusside (SNP) at concentrations between 0.01 and 10 mM all reduced LWL efficiently and induced ABA accumulation in a dose-dependent manner. When ABA synthesis was inhibited by fluridone or actidione, the effects of SNP on LWL were partially reversed. These results suggest that NO is involved in leaf water maintenance of wheat seedlings under osmotic stress, and one of the possible mechanisms is by stimulating ABA synthesis. The ROS scavengers used in our experiments had no effects on either LWL or ABA accumulation induced by osmotic stress. However, all ROS induced LWL reduction and ABA accumulation significantly. Hydrogen peroxide had the same effects as SNP on LWL and induced ABA accumulation in a dose-dependent manner but had a maximal effect at 1 mM. Fluridone reversed the effects of H2O2 on both LWL reduction and ABA accumulation, while actidione had no effect. These results suggest that ROS are also involved in leaf water maintenance of wheat seedlings by stimulating ABA biosynthesis, but with a different mechanism to that of NO. The ABA-independent mechanism in NO/ROS regulation of leaf water balance is discussed, in relation to our results.  相似文献   

15.
渗透胁迫和外源脱落酸对梭梭幼苗生理特性的影响   总被引:7,自引:0,他引:7  
水分、渗透胁迫和外源脱落酸(ABA)对旱生植物梭梭幼苗的某些生理特性存在显著影响。梭梭幼苗有很强的吸水能力,渗透胁迫下脯氨酸含量增加,其细胞膜相对透性对渗透胁迫不敏感,在脱水过程中具有较强的持水能力,外源ABA加强了梭梭幼苗的抗渗透胁迫和抗脱水的能力。  相似文献   

16.
Six Arabidopsis (Arabidopsis thaliana) clade A protein phosphatase 2Cs (PP2Cs) have established abscisic acid (ABA) signaling roles; however, phenotypic roles of the remaining three "HAI" PP2Cs, Highly ABA-Induced1 (HAI1), AKT1-Interacting PP2C1/HAI2, and HAI3, have remained unclear. HAI PP2C mutants had enhanced proline and osmoregulatory solute accumulation at low water potential, while mutants of other clade A PP2Cs had no or lesser effect on these drought resistance traits. hai1-2 also had increased expression of abiotic stress-associated genes, including dehydrins and late embryogenesis abundant proteins, but decreased expression of several defense-related genes. Conversely, the HAI PP2Cs had relatively less impact on several ABA sensitivity phenotypes. HAI PP2C single mutants were unaffected in ABA sensitivity, while double and triple mutants were moderately hypersensitive in postgermination ABA response but ABA insensitive in germination. The HAI PP2Cs interacted most strongly with PYL5 and PYL7 to -10 of the PYL/RCAR ABA receptor family, with PYL7 to -10 interactions being relatively little affected by ABA in yeast two-hybrid assays. HAI1 had especially limited PYL interaction. Reduced expression of the main HAI1-interacting PYLs at low water potential when HAI1 expression was strongly induced also suggests limited PYL regulation and a role of HAI1 activity in negatively regulating specific drought resistance phenotypes. Overall, the HAI PP2Cs had greatest effect on ABA-independent low water potential phenotypes and lesser effect on classical ABA sensitivity phenotypes. Both this and their distinct PYL interaction demonstrate a new level of functional differentiation among the clade A PP2Cs and a point of cross talk between ABA-dependent and ABA-independent drought-associated signaling.  相似文献   

17.
The influence of arbuscular mycorrhizal (AM) fungus Glomus versiforme on plant growth, osmotic adjustment and photosynthesis of tangerine (Citrus tangerine) were studied in potted culture under well-watered and water stress conditions. Seven-day-old seedlings of tangerine were transferred to pots containing Glomus versiforme or non-AMF. After 97 days, half of the seedlings were subject to water stress and the rest were well-watered for 80 days. AM colonization significantly stimulated plant growth and biomass regardless of water status. The soluble sugar of leaves and roots, the soluble starch of leaves, the total non-structural carbohydrates (NSC) of leaves and roots, and the Mg(2+) of leaves were higher in AM seedlings than those in corresponding non-AM seedlings. The levels of K(+) and Ca(2+) in leaves and roots were higher in AM seedlings than those in non-AM seedlings, but differences were only significant under water stress conditions. Moreover, AM colonization increased the distributed proportions of soluble sugar and NSC to roots. However, the proline was lower in AM seedlings compared with that in non-AM seedlings. AM seedlings had higher leaf water potential (Psi), transpiration rates (E), photosynthetic rates (Pn), stomatal conductance (g(s)), relative water content (RWC), and lower leaf temperature (Lt) than corresponding non-AM seedlings. This research also suggested that AM colonization improved the osmotic adjustment originating not from proline but from NSC, K(+), Ca(2+) and Mg(2+), resulting in the enhancement of drought tolerance.  相似文献   

18.
Abstract Water-stressed pigeonpea leaves have high levels of osmotic adjustment at low leaf water potentials. The possible contribution of this adjustment of dehydration tolerance of leaves was examined in plants grown in a controlled environment. Osmotic adjustment was varied by withholding water from plants growing in differing amounts of soil, which resulted in different rates of decline of leaf water potential. The level of osmotic adjustment was inversely related to leaf water potential in all treatments. In addition, at any particular water potential, plants that had experienced a rapid development of stress exhibited less osmotic adjustment than plants that experienced a slower development of stress. Leaves with different levels of osmotic adjustment died at water potentials between –3.4 and –6.3 MPa, but all leaves died at a similar relative water content (32%). Consequently, leaves died when relative water content reached a lethal value, rather than when a lethal leaf water potential was reached. Osmotic adjustment delayed the time and lowered the leaf water potential when the lethal relative water content occurred, because it helped maintain higher relative water contents at low leaf water potentials. The consequences of osmotic adjustment for leaf survival in water-stressed pigeonpea are discussed.  相似文献   

19.
To better define the still unclear role of proline (Pro) metabolism in drought resistance, we analyzed Arabidopsis (Arabidopsis thaliana) Δ(1)-pyrroline-5-carboxylate synthetase1 (p5cs1) mutants deficient in stress-induced Pro synthesis as well as proline dehydrogenase (pdh1) mutants blocked in Pro catabolism and found that both Pro synthesis and catabolism were required for optimal growth at low water potential (ψ(w)). The abscisic acid (ABA)-deficient mutant aba2-1 had similar reduction in root elongation as p5cs1 and p5cs1/aba2-1 double mutants. However, the reduced growth of aba2-1 but not p5cs1/aba2-1 could be complemented by exogenous ABA, indicating that Pro metabolism was required for ABA-mediated growth protection at low ψ(w). PDH1 maintained high expression in the root apex and shoot meristem at low ψ(w) rather than being repressed, as in the bulk of the shoot tissue. This, plus a reduced oxygen consumption and buildup of Pro in the root apex of pdh1-2, indicated that active Pro catabolism was needed to sustain growth at low ψ(w). Conversely, P5CS1 expression was most highly induced in shoot tissue. Both p5cs1-4 and pdh1-2 had a more reduced NADP/NADPH ratio than the wild type at low ψ(w). These results indicate a new model of Pro metabolism at low ψ(w) whereby Pro synthesis in the photosynthetic tissue regenerates NADP while Pro catabolism in meristematic and expanding cells is needed to sustain growth. Tissue-specific differences in Pro metabolism and function in maintaining a favorable NADP/NADPH ratio are relevant to understanding metabolic adaptations to drought and efforts to enhance drought resistance.  相似文献   

20.
Starch-deficient maize (Zea mays) mutants, brittle-2 (bt2), brittle-1 (bt), and shrunken-2 (sh2), which accumulated large quantities of sucrose, had less than normal amounts of zein (the major storage protein) in the endosperm. Reduction of zein synthesis in the starch-deficient mutants was negatively correlated with the accumulation of sucrose and low osmotic potential in the developing endosperms. When radioactive amino acids were injected into the shank below ears that segregated for the starch-deficient mutant and normal kernels at 28 days post-pollination, mutant kernels absorbed only ca 22–36% of the labelled amino acids found in their normal controls. Thus, a low osmotic potential in the mutant endosperm may favour water movement but reduce solute movement. The inability of amino acids to move into the mutant endosperms, therefore, in part explains the reduction of zein accumulation in starch-deficient mutant endosperms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号